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Abstract-The traditional Sparse Chirp Stepped-frequency ISAR 

imaging method has the problem of low imaging quality and 

large computational complexity. In view of the above problems, 

this paper studies a sparse Chirp Stepped-frequency ISAR 

imaging method based on two-dimensional fast iterative 

shrinkage threshold algorithm (2D-FISTA). Firstly, the 

two-dimensional echo model of Sparse Chirp Stepped-frequency 

signal is constructed. Based on this model, two-dimensional fast 

iterative shrinkage threshold algorithm is used to reconstruct 

the imaging result. This method can be reconstructed in the 

matrix domain directly, which avoids the computation of the 

vector processing method, and avoids the problem of the image 

quality loss of the decoupling method. The simulation results 

show that the proposed method is effective and has better 

imaging performance. 

Keywords-sparse chirp stepped-frequency signal; 2D-FISTA; 

compressive sensing; ISAR super-resolution imaging 

I. INTRODUCTION 

Synthetic Aperture Radar /Inverse Synthetic Aperture 

Radar (SAR/ISAR) is mainly to achieve high range resolution 

by increasing the signal bandwidth. Stepped-frequency Chirp 

Signal (SFCS) by transmitting a set of continuous linear 

frequency carrier frequency hopping realization synthetic 

large bandwidth. It has the advantages of low system 

complexity, low cost, easy to realize and so on, which has 

become the development trend of high resolution radar 

technology [1, 2, 3]. Because of the number of sub pulses 

transmitted by the SFCS, the imaging time is long. Therefore, 

in practice, the echo signal is usually sparse. The traditional 

processing method in dealing with the Sparse 

Stepped-frequency Chirp Signal (SSFCS) will appear when 

the performance degradation or even invalidate, increases the 

difficulty of signal processing. In recent years, with the theory 

of compressive sensing [4] has been widely used in 

SAR/ISAR imaging system, it provides a new way to solve the 

problem of sparse signal imaging [5,6,7].  

In [8, 9, 10, 12], the matrix is transformed into vector form 

firstly, and then the sparse signal imaging is carried out. The 

above research is based on one dimensional reconstruction 

algorithm or the row and column stacking method to 

reconstruct, so the computation is large. Literature [13] uses 

MSL0 algorithm to reconstruct the distance direction and 

azimuth direction, which can further reduce the computational 

complexity. However, this method did not consider the 

distance and azimuth coupling information, so the image 

quality degradation. A 2D-OMP algorithm is proposed in [14], 

but it is necessary to set up a specific set of sparse dictionary, 

so it is not widely used. The concept of two-dimensional 

random projection is proposed in [15], and the idea of using 

2D-SL0 to reconstruct the random projection is analyzed. 

Literature [16, 17, 18] proposed 2D iterative adaptive method 

for 2D signal reconstruction, and obtain a better 

reconstruction effect, but the method has higher 

computational complexity too. 

II. SSFCS ECHO MODEL 

A set of SFCS can be expressed as [12]:  

  (1) 
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 is a window 
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number, 0f  is carrier frequency, t  is the time, T  is 

sub-pulse width, 
f

 is carrier frequency step and the 

equivalent signal bandwidth is 
B N f 

. 

Assuming that the target’s motion compensation has been 

completed and transformed into an equivalent table model, the 

detailed motion compensation method can be referenced in [1]. 

Then, the sampling signal obtained by the sub-pulse 

compression processing which is reflected by the I  

scattering points and the distance from radar is
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For the target turntable model, the distance between the 

 1,......i i I
 scattering point and the radar at the t  time can 

be expressed as [12]: 
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Where, 0R
 is Initial distance, 

,i ix y
 are the horizontal 

and vertical coordinates of the i  scattering point on the target 

coordinate system, 
( )mt

 is the rotation angle of the target 

related to the slow time mt . When the target rotation angle is 

usually relatively small during the observation time, 

  cos 1mt 
,

    sin m mt t 
. Therefore, the formula 

(3) constant is incorporated into the amplitude information 

and is brought into the Eq. 2: 

  (4) 

Because the signal in range direction and azimuth 

sampling points were N  and M , so the distance resolution of 

is
/ (2 )x c N f  

 and azimuth resolution 

is 0 / (2 )y M   
, where 0 / oc f 

. According to the 

distance and azimuth resolution, the target is discretized and 

the discrete form of the target area 
pq P Q

 


   
 is 

obtained. Where, P NJ ,
Q MJ

, J  is the range and 

azimuth super resolution ratio. Because 0n 
, so Eq. 4 can 

be written as: 
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The Eq. 5 is written in matrix form: 
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When the distance and azimuth are sparse, the SSFCS 

echo model can be written as: 

 
T T

r r a aY Dψ σψ D
 (6) 

Among them, Y  is sparse echo data matrix, rD
is 

distance to sparse matrix, aD
 is azimuth sparse matrix. 

Obviously, the above Eq. 7 is an ill conditioned equation, 

and there are infinitely many solutions. The optimal solution 

can be obtained by using the theory of compressed sensing. 

III. SSFCS-ISAR JOINT IMAGING METHOD 

According to CS theory, if the target is sparse or 

compressible, it can accurately reconstruct the target and the 

observed value can be significantly reduced by compressed 

sensing algorithm [4]. In fact, when the resolution is 

determined, the target can only contain a finite number of 

scattered points, that is, the object is sparse and can be 

reconstructed by using compressed sensing theory. 

Assuming r r=A Dψ
, a a=B ψ D

, the Eq. 7 can be written: 

 
T

Y = AGB
 (7) 

Under the condition of complex noise, the Eq. 8 can be 

converted to the unconstrained optimization problem. 

  (8) 

Where,   is the regularization parameter, which is used 

to control the balance between the precision of estimation and 

the sparse of the row. Eq. 9 can be quickly solved by FISTA 

theory [19].FISTA optimization algorithm is proposed based 

on Nestrov algorithm, its convergence rate is two 

times
 21/O k

. It has the same order of convergence rate as 

the optimal first order optimization algorithm. Therefore, it 

has the advantage of fast convergence. 

Assuming that the auxiliary variable of the first k  

iteration is
k

Z , and 
k

G  for the reconstruction result of k  

iterations obtained, then 
k

Z  update formula is:  

 

 11 1k k k kk

k

t

t

 
  Z G G G

 (9) 
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Where, 
 k Z

 is gradient vector, its value is: 
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Eq. 11 has a unique minimal solution. For the convenience 

of using iterative soft threshold algorithm for solving 

algebraic approximation, transformation of 
 , k

LQ G Z
, 

while ignoring the constant term can be obtained: 

  (12) 

Where, 
 k

LP Z
 is the optimal solution.  

Since 1
G

 is a separable variable, the Eq. 13 can be 

solved by using soft threshold function, and the update 

formula for 
kG  is obtained: 
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Note that in the Eq. 13,
H

A A , 
T *

B B  and 
H *

A YB  are 

constants, can be computed in the iterative initialization, 

which can save computation. Finally summed up the flow 

chart of 2D-FISTA are shown in the following table. 

TABLE I. 2D-FISTA ALGORITHM 

2D-FISTA algorithm: 

Input: 
Α, B,Y

 

Initialization: 
 L L f

, 
0  0X , 

H 


 *
A YB

 

Step k  iterative process: 

First step: Calculate 
k

Z  and its gradient 

matrix
 k Z

. 

Second step: Solve 
1k

G : 

 1 1
,k csoft

L L

  
   

 

k k
G Z Z

  

Third step: Update step size 1kt  : 
2

1 1 4 / 2k kt t  
  

Output: After the stop condition is satisfied, the final 

iteration result is obtained
ˆ k

G = G . 

In order to further reduce the number of iterations of the 

FISTA algorithm, we can take the idea of changing


, that 

is
1k k  

. 


is attenuation factor. In the initial iteration, 

to support range of sparse signal accurately determined, so we 

should choose a large


, general
0.6 1 

. When the 

iterative error 

2
T

F
Y AGB

 reaches the threshold


, it 

shows that the sparse degree of the signal is close to the 

demand. At this time, it is needed to speed up the convergence 

rate. Therefore, choosing 
0 0.5 

 can further improve the 

convergence rate. 

IV. SIMULATION ANALYSIS AND VERIFICATION 

Assuming that the simulation parameters are set as follows: 

512M  , 256N  , 0 10GHzf  , 
5T s

, 
2MHzf 

, 

2MHzB  , PRF 200Hz , 0=50.5KmR , SNR=10dB , 

3J  . The target model is shown in Figure 1, the angle 

between the target flight direction and the X axis is 60°, and 

the flight speed is =400m/sv . 

Assuming the range and cross-range are not sparse, namely 

all data for translational motion compensation and 

two-dimensional joint imaging. The reconstruction results 

shows in Fig. 2. 
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Figure 1. The target model. 

Advances in Computer Science Research, volume 44

3



R
a

n
g

e
[
m

]

Cross Range[Hz]
-50 -40 -30 -20 -10 0 10 20 30 40 50

5.049

5.0495

5.05

5.0505

5.051

5.0515

5.052

5.0525

5.053
x 10

4

 

Figure 2. Two dimensional united algorithm. 

The simulation results in Fig. 2 can be seen that the 

imaging effect is better after motion compensation, which 

proves the validity of this method. 

Assuming that other simulation conditions are unchanged, 

the simulation results are shown in Fig. 3 after motion 

compensation under different sparse rate conditions. In order 

to facilitate the performance comparison, the imaging results 

of the traditional RD algorithm and the two dimensional 

decoupling method of MSL0 are presented. 

In Fig. 3, the first column to the third column is the use of 

RD algorithm, two-dimensional decoupling algorithm, the 

proposed algorithm respectively to get the imaging results. Fig. 

3(a)-Fig. 3(c) are different sparse conditions of the imaging 

results of the three algorithms. It can be seen that: under 

different sparse conditions, the imaging results of RD 

algorithm are poor and have more false scattering points. For 

the two-dimensional decoupling algorithm, with the increase 

of the sparse rate, the false scattering points of the imaging 

results are gradually increased, which has a great influence on 

the imaging results. For the proposed algorithm, with the 

gradual increase of the sparse rate, the suppression effect of 

the false scattering point is more ideal, the imaging effect is 

the most stable. Overall, the proposed algorithm has better 

imaging effect, and the performance is most stable under 

different sparse rate conditions. 

V. SUMMARY 

In this paper, we propose a new method based on 

2D-FISTA algorithm for the ISAR imaging of sparse 

frequency stepped frequency waveform, and the simulation 

results show that the proposed method is effective. The 

method has fast convergence speed, but it needs to be chosen 

to achieve a better effect, so how to choose the right 

parameters to achieve the best results will be the focus of the 

next research in the future. 
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(a) 10% sparse rate in Range, 10% sparse rate in Cross Range 

 
(b) 20% sparse rate in Range, 20% sparse rate in Cross Range 

 
(c) 20% sparse rate in Range, 40% sparse rate in Cross Range 

Figure 3. Simulation result of the echo of SSFCS signal.  
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