
File Tracking Method and System Based on Life Cycle Tree

Guang-Yu Gu, Xiang Cai, Shu-Juan Zhang

State Grid Anhui Electric Power Research Institute,

Hefei, China

E-mail: gugy2051@ah.sgcc.com.cn,

caixiangcx3@163.com, zhangsj202x@ah.sgcc.com.cn

Qing Yi

Anhui Electrical Engineering Professional Technique

College, Hefei, China

E-mail: yiqing302@163.com

Kun Ding

SKLOIS, Institute of Information Engineering, CAS, Beijing, China
E-mail: dingkun@iie.ac.cn

Abstract-There are many difficult challenges, such as variety,

quantity, distribution etc. in the unstructured data tracking

management, which lacks an effective file tracking

management solution. In this paper, based on the storage

mechanism of HBase, we propose a data life cycle tree storage

structure, and realize the whole life cycle tracking ȡ of the file.

At the same time, the system can provide visual analysis

services, such as frequency of operation, distribution of hot

spots, data types, the breadth and depth of the life cycle tree,

and the data volume trend prediction etc. Compared with

common data management systems, this system can be more

efficient and fast to query and build the data life cycle tree, and

quickly realize the visual analysis of the document.

Keywords- data life cycle; tree storage structure; file tracking

management system

I. INTRODUCTION

How to carry on a reliable and effective management to
the massive data under the big data environment in the era of
comprehensive data explosion has become the hot spot of the
data security research. For the text, image, video and other
unstructured data, their data type, quantity, distribution, size
and other characteristics bring a challenge to the supervision
to the data object of the file system.

There are the following problems and challenges in the
management of the unstructured data:
 The tracking management of operation behavior in

the whole life cycle[1] of data objects is not
systematic, which lacks an intuitive structure like the
life cycle tree[2][3]. In the face of massive data audit
log, however, the efficiency of constructing and
querying the life cycle tree is quite low. General
systems try to build file life cycle tree by traversing
table or querying the index table, which is difficult to
compromise on time efficiency and space capacity.

 Lack of effective data visualization analysis. Huge
amount of data value is hidden in the audit logs.
Data visualization analysis not only allows users to
intuitively understand the basic situation of the
current data management, but also to view the trend
of using frequency, data types, capacity, distribution

and other aspects, which helps to improve the
efficiency of data real-time management.

 It is difficult to locate event and collect evidence fast
and accurately when the data object is abnormal.
Once data leak event occurred, a lot of manual work
like querying for the audit logs is required to locate
the key information, which is time-consuming and
less accurate.

To solve the above problem, we proposed a tree-storage
structure under HBase [4] mode. In the case of massive data,
the efficiency of life cycle [5] tracking and query function is
far superior to the common data management system. Also,
we implement the unstructured data object visualization
analysis efficiently with the tree-storage structure.

collection
module

processing
module

storage
module

tracking
module

 file system

visual analysis
module

 file life cycle
management system

Figure 1. System function modules.

As is shown in Fig.1, the proposed system is composed
of collection module, processing module, storage module,
tracking module and visual analysis module, which can track
and manage the whole life cycle of unstructured data objects.
Based on HBase, the system may track the life cycle of data
objects efficiently. At the same time, the visual analysis
module can carry on statistical analysis to the massive audit
log of the storage, display the visually results.

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

70

II. DATA LIFE CYCLE TREE

A. Data Object Life Cycle

The life cycle process of unstructured data in a file
system may include: create, store, access, transfer,
destruction and recovery. Each process in the file
management system corresponds to one or more operation
behavior.

“Create” refers to the process of data generating in the
file system, including a series of data initial behavior.
"Storage" refers to the persistent process in the storage
device of data objects that have been generated. "Access"
refers to the operation of read, modify etc. to the data that
from the persistent state to the instantaneous state.
“Transfer” refers to the process of data migration.
"Destruction" and "recovery" means the removal of data
objects and the reduction process of data after deletion.

B. File System Operation Type

For example, the common Windows OS that based on
NTFS [6], each life cycle process is corresponding to at least
one operation type of data objects.

As is shown in Fig.2, new data objects are generated by
“New” operation, which belongs to “create” process. “Save”
and “Save as” persistent data objects from memory to disk,
which can be considered as “storage” process. “Open”,
“Preview” and “Rename” operations fetch data from disk
into memory for reading or modifying, and pertain to
“access” process. “Move”, “Cut” and other operations
migrate data objects, which can be assigned to “transfer”
process. “Delete” operation removes the data object, so that
it is belonging to “Destruction” process. “Restore” and
“Undo” operations restore the deleted data, which belongs to
“recovery” process.

create

Undo

storage

access

transfer

destruction

recovery

New

Save Save as

Open Preview Rename Edit

Move Cut Copy Paste

Delete

Restore

...

...

...

...

...

...

Figure 2. File life cycle and operation type.

C. Tree Structure Algorithm

1) Node classification and storage algorithm
The classifier will receive behavior events and classify

them. Events that pertain to the type of data creation belong
to class “A”. Events that change the “dataId”(which will be
described in III.B section) of data objects belong to class “B”.
And the rest are belonging to class “C”. The storage
algorithm will firstly convert the behavior event into a log,

and then process it according the corresponding
classification. The generated log can be stored after adding
the field of the root node pointer(i.e., its own row key) if it is
an “A” class event. In the case of class “B”, the original
“dataId” will be extracted from the event. Then the algorithm
will find the latest log in the “dataId” from the storage, and
copy the root node pointer from the log to the new one. After
storing the new log, the algorithm will append its pointer to
the corresponding field of the original log. While in the case
of class “C”, the algorithm will extract the “dataId” from the
event and find the latest log in such “dataId”, and add the
root node pointer (field data:root_rk) to the new log before
storing it.

The pseudo code of the algorithm is as followed:
// Algorithm received behavioral events
Event e = FUNCTION receivedEvent();
// Classification of events using a classifier
FUNCTION classifier(Event e){
IF(e.type=”create”)
RETURN class_A;
ELSE IF(e.dataId!=e.original_dataId)
RETURN class_B;
ELSE
RETURN class_C;
}

// Generate log row key
RowKey rk = FUNCTION getRK(e.dataId,e.timestamp);
Log log = FUNCTION convert2Log(rk,e);// Generate log
IF(e==class_A){
log.addColumn(“data:root_rk”,rk);
FUNCTION save(rk,log);
}
IF(e==class_B){
Log ori_log = FUNCTION findLatest(e.original_dataId);
log.addColumn(“data:root_rk”,ori_log.root_rk);
FUNCTION save(rk,log);
 //Append node pointer of new log to the original log
ori_log.appendCloumn(“data:sub_rk”,rk);
FUNCTION update(ori_log.rk,ori_log);
}
IF(e==class_C){
Log pre_log=FUNCTION findLatest(e.dataId);
log.addColumn(“data:root_rk”,pre_log.root_rk);
FUNCTION save(rk,log);
}
The algorithm complexity is O(1). The algorithm is

designed to store the tree data structure, as each node has a
pointer to the root node. For the nodes whose “dataId”s are
not changed, which are stored in order, the parent node can
index to the child nodes quickly. For the nodes whose
“dataId”s are changed, the parent node has the pointer(s) to
the child node(s).

2) Constructing tree algorithm
The constructing tree algorithm is used to construct the

data tree. The input of the algorithm is “dataId”. The
algorithm will find the latest log in the received “dataId”
from the storage firstly, and get the root node pointer from
the log. And then the algorithm will obtain the root node log

Advances in Computer Science Research, volume 44

71

by the pointer. After that, the algorithm will construct the
data tree by iteration from the root node. For those “dataId”-
changed nodes, the algorithm traverses the sub nodes by the
sub node set of the parent node. While for those “dataId”-
not-changed nodes, the algorithm can index to the child
nodes directly. After the iteration, the constructing of data
tree will be completed.

The pseudo code of the algorithm is as followed:
FUNCTION buildTree(DataId dataId){
Log log = FUNCTION findLatest(dataId);
// Get the root node row key
RowKey root_rk=log.root_rk;
// Find the root node log
Log log = FUNCTION find(root_rk);
FUNCTION addRootNode(log);// Add root node
FUNCTION buildTree(root_rk);
}
FUNCTION buildTree(RowKey rk){
Log log = FUNCTION find(rk);
IF(log.sub_rk!=null){
FOR EACH rk IN log.sub_rk{
Log log = find(rk);
//Add sub node
FUNCTION addChildNode(log);
// Iterative build tree
FUNCTION buildTree(rk);
}
}

Log next_log = FUNCTION findNext(rk);
IF(next_log!=null){
//Add sub node
FUNCTION addChildNode(next_log);
// Iterative build tree
FUNCTION buildTree(next_log.rk);
}
}
The algorithm complexity is O(n), and n is related to the

number of nodes.

III. MODULE DESIGN AND SYSTEM

IMPLEMENTATION

A. Collection Module

The collection module is installed in each user terminal
as a behavior monitoring and recording program, which can
monitor file objects in the specified disk directory, record a
series of data manipulation actions by the operator in the file
system, and transmit the relevant behavior events recorded
by the system to the processing module in a specific format.

The information collected by the collection module
mainly includes the filename, the absolute path, the data type,
the operation, the operation time, the operator etc. For the
filename, the absolute path and data type, if they are changed
by the operation, the collection module will record the
changes before and after. For example, the module will
record that the data object is renamed from “TestA.txt” to
“TextB.txt”.

There are two ways of data transmission between the
collection module and the processing module: real time
synchronization and pseudo real time synchronization. When
it runs in real time synchronization, the collection module
will send the relevant information to the processing module
immediately once detects data operations, which is suitable
for the situation that the operation frequency under the
monitoring directory is moderate and the scenes that the
terminal cluster is smaller. When it runs in pseudo real time
synchronization, the relevant information will be cached to
the local side, and will be packaged at a certain time to send
out to the processing module. The time interval is so small
that the user will be difficult to perceive. Such way is
suitable for the situation with high operation frequency and
the scenes that the terminal cluster is large.

The detailed work flow of the collection module is as
follows:
 Start module, collect the physical address, network

address, the OS user and other relevant information.
Then the monitoring directory will be configured in
order to capture file operation behavior.

 Capture file operations, and extract the related
information of the file, and then generate an
operation event.

 If runs in real time synchronization, send the event to
the processing module immediately; if run in pseudo
real time synchronization, cache the event to the
local side.

 The pseudo real time synchronization algorithm
calculates the time for synchronization, at which the
collection module package the local events and send
them out to the processing module.

B. Storage Module

The storage module is used to store the file life cycle logs.
The HBase table structure is used in the storage module. The
row key is designed in the form of “RowKey = dataId +
(MAX_VALUE – timestamp)”, while “dataId = Hash(Mac
+ path + filename + extension)”. Such design can meet the
requirements of high performance: “dataId” is processed by
128 bit hash operation, so the row keys can achieve load
balancing with a fixed 16 byte output. And the timestamp
uses the “Long” type with 8 byte array. Thus the total length
of the row key is 24 bytes. The design of “MAX_VALUE -
timestamp” can ensure the log flashback storage by the time.
The row key elements are shown in TABLE 1.

TABLE I. ROW KEY ELEMENT

Definition Description

Mac
Record the physical address of the hardware of the file

system

timestamp Record the time stamp of the current event

path Record the absolute path of the data object

filename Record the name of the data object

extension Record the file type(extension) of the data object

Advances in Computer Science Research, volume 44

72

In the storage module, each line in the audit table
represents an audit log, and columns in each log are
corresponding to the timestamp, data name, id, extension
name, path, OS user, physical address, network address, OS,
file system, tree structure node pointer and other information.
HBase is a scalable columnar storage database, which may
not write for every column of the table in a certain stored
procedure, for that additional columns can be added
dynamically.

receive event(s)

start module

name changed?

path changed?

type changed?

Class BClass C

yes

yes

yes

no

no

no

Is it new?

Class A

yes

no

Figure 3. Classification logic.

C. Processing Module

1) Classifier
According to the tree structure classification algorithm,

the classification of the processing module is designed as
follows:

Definition 1. In the file system, if a new data objects is
created, the operation behavior is belonging to class “A”.

Definition 2. In the file system, if the path, or the name,
or the type (extension) of the data is changed after the
operation, such operation behavior is belonging to class “B”.

Definition 3. In the file system, operations excluding
class “A” and “B” are belonging to class “C”.

The detailed work flow of classifier is shown in Fig.3.

2) Processing procedure
The changes of data path, name and type before and after

the operation will be recorded by the collection module,
based on which the classifier of the processing module is to
classify the received behavior events. For example, “new”
operation events are divided into class “A”; “move”,
“rename”, “modified extension” operation events are divided
into class “B”; “open”, “edit” operation events are divided
into class “C”.

For class “C” operation events, the row key will be
generated according to generation rules mentioned in section
III.B. The collected information will be filled to the

corresponding column before the item are written to the audit
log table of the memory module.

For class “B” operation events, at least one of the data
path, name and type will be changed, which means the
“dataId” will be changed according the row key generation
rules. The processing module will find the latest log in the
audit log table by the original “dataId”, and copy the
“data:root_rk” column to the new log. After storing the new
log, the module will append its row key to the “data:sub_rk”
column of the original “dataId” log. “data:root_rk” and
“data:sub_rk” can be regarded as node pointers of the tree
data structure, pointing to each other.

As described in III.A, the collection module can record
the changes before and after. For those “dataId”-changed
events, it is feasible to obtain the original “dataId” according
to the information before the change.

D. Tracking Module

This module is used to locate the relevant audit log and
construct the life cycle tree. According to the row key
generation rules, “dataId” is composed of the data path,
name, type, and the physical address of the terminal.
Combined with the timestamp to get the row key, the module
can quickly locate the corresponding audit log.

Each node of the life cycle tree corresponds to a log
record in the audit log table of the memory module. For each
data object recorded by the log, the module can query any
nodes in the tree according to the row key and node pointers
without traversing all the records of the entire storage
module, which is fast and efficient.

Due to the characteristic of row key in HBase, it no
longer needs to traverse the table when constructing the life
cycle tree. As a result, the constructing efficiency is superior
to the common file management system under big data
situation. Also, the index table is not needed, which saves the
system memory.

An example of the life cycle tree is shown in Fig.4. When
a new file object is copied from the original one, it will be
described as a fork. Fig.5 shows the related table in HBase
according to Fig.4.

Rename

New

Move Copy

EditDelete

Copy
Change

type

Figure 4. Life cycle tree of the data object.

The detailed work flow of the tracking module is as
followed:

1) If receiving a location instruction, the module will
generate the row key according to the received data path,

Advances in Computer Science Research, volume 44

73

name, type, physical address, timestamp and other
information to index and return the log entry;

2) If receiving a tree constructing instruction, the module
will locate to the latest log of the data object firstly, find the
root node by its “data:root_rk” column, and then construct
the tree by the algorithm.

E. Visual Analysis Module

This module can statistically analyze the audit log in the
storage module. The operation frequency ranking, hot spot
distribution ranking, data type ranking, life cycle tree width
and depth ranking, and the trend prediction of the data can be
obtained.

Visual analysis module

statistical algorithm lib custom algorithm interface

Algorithm layer

Statistical model layer

operation
frequency

hot spot
distribution

data type

life cycle tree width life cycle tree depth

trend prediction of the data custom statistical model

Figure 5. Schematic diagram of visual analysis module.

As is shown in Fig.6, this module is composed of the
statistical model layer and the algorithm layer. The former is
used to define statistical requirements, and the latter define
the relevant algorithm logic according to the requirements. In
addition, a custom interface is reserved to add new statistical
model and related algorithm.

relational
database

distributed
database

application
server

message
queue

terminal
monitoring agent

visualization
B/S

WebService

Figure 6. System architecture.

This module uses MapReduce, a distributed computing
tool, to do the corresponding statistical analysis of the data
for different requirements. Distributed computing can be
implemented in parallel computing, which greatly reduces
the time required for statistical analysis.

IV. IMPLEMENTATION OF THE SYSTEM

The implementation of the life cycle tracking and visual
analysis system is based on SOA multilayer framework [7].
The system architecture is shown in Fig.7.

Figure 7. Table of HBase.

Advances in Computer Science Research, volume 44

74

The collection module is developed by C language as the

application service component, while the server using Java.

The back-end development uses Spring MVC

architecture [8], integrating with the front-end in B/S mode.

The web layer respond HTTP requests by servlet(s) [9], and

call the corresponding service(s) in the back-end to complete

the business logic before returning the result to the front-end.

The front-end uses JavaScript for processing and rendering

after receiving the results, achieving RIA (Rich Internet

Applications) by using JSP and AJAX [10].

A unified service framework is adopted in the service

interface layer, docking with Webservice, HTTP and other

interface protocol, using JSON format for transmission of

data.

Mysql is used as a relational database in the data storage

layer, storing the user, permissions, configuration, model and

other system metadata, integrating with the back-end by

Hibernate [11]. HBase is used as a distributed database in the

data storage layer to store the audit logs and other business

data, which is based on HDFS [12], and integrates with the

back-end well by the simplehbase plug-in.

The detailed work flow of the life cycle tracking and

visual analysis system is as followed:

1) The specified disk directory is monitored by the

terminal agent. All of the file operations are recorded and

converted to events. These events will be sent to the message

queue [13] of the application server in the real time or

pseudo real time manner.

2) The message queue submits the receiving events to the

application server in chronological order. The application

server calls the classifier to classify these file operation

events.

3) The application server processes the classification

results and converts the event(s) to log(s), and then stores

log(s) to the distributed database.

4) Once receiving the relevant instruction, the application

server locates the right log in the storage, or constructs life

cycle tree according to request parameters. Users can view

the log or tree through the browser.

5) Users can send a visual analysis request on the

browser, and the application server tries to find the statistical

models from the relational database, call the relevant

algorithms to analyze the information in the distributed

database, and get the final analysis results.

V. CONCLUSION

It is a common problem that how to manage and track the
life cycle of unstructured data with different variety, quantity
and distribution. We propose a data life cycle tree storage
structured which is suitable for HBase. On the basis of it, we
realizes the life cycle tracking and visual analysis system.
Compared with common data management system, this
system can efficiently and quickly query and construct the
data life cycle tree, and has a satisfactory adaptability to the
increment of the data object log. Meanwhile, the system can
statistically analyze massive logs according to the
requirements of the user, and obtains the visual analysis
results.

REFERENCES

[1] H.V Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J.M.

Patel, R. Ramakrishnan, and C. Shahabi, “Big data and its technical
challenges,” Communications of the ACM, 2014, 57(7),pp. 86-94.

[2] P. Hsiao and W. Feng, “Using a multiple storage quad tree on a

hierarchical VLSI compaction scheme,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 1990,
9(5), pp. 522-536.

[3] M.H. Pan and Z.H. Yao, “The application of multilayer tree structure

in DICOM,” Medical Imaging. International Society for Optics and
Photonics, 2006, 614519-614519-11.

[4] L. George, HBase: the definitive guide. " O'Reilly Media, Inc.", 2011.

[5] A. Simonet, G. Fedak, and M. Ripeanu. "Active data: a programming

model to manage data life cycle across heterogeneous systems and

infrastructures," Future Generation Computer Systems, 2015, pp. 25-
42.

[6] G. Fellows, “NTFS volume mounts, directory junctions and
$Reparse,” Digital Investigation, 2007, 4(3), pp. 116-118.

[7] L. Wu, G. Barash, and C. Bartolini, “A service-oriented architecture

for business intelligence,” IEEE international conference on service-

oriented computing and applications (SOCA'07). IEEE, 2007, pp.
279-285.

[8] G. Warin, Mastering Spring MVC 4, Packt Publishing Ltd, 2015.

[9] J. Hunter and W. Crawford. Java servlet programming. " O'Reilly
Media, Inc.", 2001.

[10] N.C. Zakas and J. Fawcett, Professional Ajax. John Wiley & Sons,
2007.

[11] Y. Ren, D. Jiang, T. Xing, and P. Zhu, “Research on software

development platform based on SSH framework structure,” Procedia
Engineering, 2011, pp. 3078-3082.

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). IEEE, 2010, pp. 1-10.

[13] J.A. Zounmevo, A. Afsahi, “A fast and resource-conscious MPI

message queue mechanism for large-scale jobs,” Future Generation
Computer Systems, 2014, pp. 265-290.

Advances in Computer Science Research, volume 44

75

