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Abstract-In this paper, we propose an effective and efficient 

method to remove haze from a single input image. We first 

remove fine details from the minimum channel of RGB 

channels by a low-pass filter and then use it as a rough 

estimation of the transmission map. Then, we refine the rough 

estimation by using the saturation channel of HSI color space 

and local contrast. Based on the atmospheric scattering model, 

we then obtain a high-quality haze-removed image. Results on a 

variety of hazy images demonstrate the effectiveness and 

efficiency of our method. 

Keywords-dehaze; saturation; low-pass filter; contrast; 

transmission map estimation 

I. INTRODUCTION 

With the development of computer technology, haze 
removal is getting more and more attention in 
consumer/computational photography and computer vision 

applications (like remote sense, driving assistance and video 
surveillance). Under bad weather conditions, images of 
outdoor scenes are usually degraded by the particles (like 
haze, fog and smoke) suspended in the atmosphere. Due to 

the scattering effect of suspended particles to lights, the 
reflected lights received by the camera from the scene point 
are attenuated while being blended with air-lights –ambient 
lights scattered by atmospheric particles. Eventually, images 

are captured with decreased visibility and color shift. 
Removing haze can significantly increase the visibility and 
correct the color shift mentioned above. However, haze 

removal is an ill-posed problem for lacking information 
about haze-free images. 

Nowadays, dehazing methods can be divided into two 
categories. One type is mainly based on image enhancement 

which can obtain good visibility but tend to cause large 
distortion. The other type is mainly based on the 
atmospheric scattering model [1] which analyzed the 

mechanism of image degradation by haze. This type of 
method can obtain haze-removed images that are closer to 
the ‘real’ haze-free images. The one based on the 
atmospheric scattering model is commonly used. Some 

removed haze by getting information about scene depth 
from different ways, like user interaction [2], known 3D 
model [3] or multi-images under different atmospheric 

conditions [4-6]. Some others removed haze by using 

multi-images took under different polarization angles [7-8]. 
However, all the method in [4-8] can hardly be used in 
applications due to the harsh requirements. Recently, 

dehazing methods using only single image are developed. 
The success of these methods lies on strong priors or 
assumptions. Fattal [9] removed haze under the assumption 
of local uncorrelation between the medium transmission and 

the albedo of the scene. When dealing with thin fog images, 
this method performs well. However, this method can’t 
handle dense fog images well. Moreover, the local 

uncorrelation assumption is not always true. Tarel [10] 
analyzed the range of atmospheric veil and assumed 
atmospheric veil changing slowly to remove haze. This 
method can significantly remove haze while causing 

residual haze, halo effect and chromatic aberration. He [11] 
proposed a dark channel prior to roughly estimate the 
transmission followed by a soft matting process to optimize 
the transmission. This method performs well while being 

very time-consuming and not handling well images with 
large area of sky. Later, He [12] proposed a guided filter to 
replace the soft-matting which greatly reduced the 

processing time but still not fast enough and slightly 
weakened the effectiveness. Wang [13] used a method of 
multiscale transmission-map fusion, which performing well 
but being extreme time-consuming. Zhu [14] proposed a 

color attenuation prior and formed a linear equation about 
the minimum channel of RGB channels and scene depth 
which was obtained through a training with synthesis hazy 

images. This method can remove haze very fast but can only 
handle thin haze images well and can’t achieve vivid details. 

In this paper, we propose a new method to remove haze 
from a single input image to have a good performance both 

on the effectiveness and efficiency. We first remove fine 
details from the minimum channel of RGB channels by a 
low-pass filter. Then we use it as a rough estimation of the 
transmission map followed by a refinement using the 

saturation channel of HSI color space and local contrast. 
Based on the atmospheric scattering model, we then obtain 
a high-quality haze-removed image. At the end, experiments 

on different images are implemented to compare with others’ 
methods with quantitation measurements. 
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II. OUR METHOD 

In this section, we first introduce the widely used 
atmospheric scattering model, then present our method. At 
the end, we conclude the procedures of our method. 

A. Atmospheric Scattering Model 

This model can be expressed as 

 
c cI (x)= J (x)t(x)+ A(1- t(x))

 
(1) 

 
- d(x)t(x)= e 

 (2) 

where           for RGB images, I is a hazy image, 
J is the haze-free image of I, t is the medium transmission, A 
is the global atmospheric light,   is the scattering 
coefficient of the atmosphere, and d is the scene depth. 
Equation (1) shows that the unknown variables t and A have 
to be estimated in order to recover J from I. 

B. Medium Transmission Estimation 

Normally, most pixels in hazy images have a lower 
value than A. According to the dark channel prior of   He 
[15], at least one channel of an out-door color (RGB) image 
has a low value for most pixels, which is normally the case 
due to shadows, colorful objects and dark objects. It is 
obvious to see from equation (1) that the minimum value of 
RGB channels of I, which is denoted as W0 in this paper, 
increases with decreasing t. This means that we can get a 
rough estimation about t via W0. He [11] first used a 
minimum filter to W0 to get a rough estimation about t, then 
refined the rough estimation by a guided filter. Tarel [10] 
first used W0 directly as the rough estimation of t, then 
refined it by two median filters. Zhu [14] estimated t using a 
linear equation about W0 and scene depth d obtained 
through a training with synthesis hazy images.  

Unlike Tarel [10], we don’t directly use W0 as a rough 
estimation of t since W0 contains much fine details which 
are not good for the estimation of t since t should vary 
smoothly except for areas with depth discontinuity. We 
extract the fine details and then subtract it from W0. 

 
V(x)= A*(1- t)=W(x)

 (3) 
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Where   denotes a convolution operation. Then, the 

refinement of t needs to be done. By analyzing equation (1) 
again, we find that the pixel value       gets closer to A 
when the value of t gets smaller, which means that the 
disparity between RGB color channels decreases with t and 
the pixel is more affected by haze. By converting RGB 
color space to HSI color space, we find that the saturation S 
of a pixel is smaller when it is more affected by haze. 
Consequently, smaller the saturation S of a pixel is, the 
more reliable using W as the estimation of t is. We model 
the credibility function of S as a Gaussian function with 
mean value of 0, 
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where   is set to be 0.5 for all the experiments in this 
paper. Hence, for the estimation of t, we have the following 
equation, 

 
( ) ( ) ( )xV x P s W x 

 (10) 

However, using this equation to estimate t is not nough 
considering that the white objects in input images may be 
distorted to gray objects due to small estimated value of t 
for them. So we need to refine equation (8) by ultiplying a 
term C(x) for preserving the white objects. By ervation, we 
find that white objects normally are much smoother locally 
than haze, which means that the local contrast of white 
objects is much lower than that of haze. C(x) will set the 
estimated value of t for white objects to be lower since it 
has a lower contrast. The three normally used quantitative 
definitions of contrast are Mean Squared Error (MSE) 
Contrast, Michelson Contrast and Weber Contrast. 
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Where P(x) is a local patch centered at pixel x, N is the 
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total number of pixels in the patch P(x),             is the mean 
value among the patch P(x). The patch size is set to be 5x5 
and the definition of contrast we use is the MSE contrast for 
all the experiments in this paper. Normally, the      is 
much small than 1. Hence, we normalize it to enhance the 
difference between      by simply dividing the maximum 
of     , 
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Similarly, we use a Gaussian function with a mean value 
of 1 to express C(x), 
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Where   is set to be    which leading 
 

    to be 0.1 

and then the minimum of C(x) is about 0.9 which can’t be 
too small in order to ensure a sufficient degree of haze 
removing. Finally, we have the following equation, 

 
( ) ( )* ( )* ( )xV x C x P s W x

 (16) 

For explicitly expressing t, we have 
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Then J(x) can be expressed as 

 0

( )
( )

max( , )

C
C I x A

J x A
t t


 

 (18) 

where t0 is set to be 0.1 in case t is too small and then 
amplifies the noise. After estimating A, we can then recover 
J according to (18). 

C. Global Atmospheric Light Estimation 

According to Nayar [1], the best estimate of A is the 
value of point where haze is densest. He [11] first picked the 
top 0.1% brightest pixels in the dark channel among which 
pixel with highest intensity in the input image I is selected 
as A. While this estimation of A is likely to be affected by 
the sky or white objects. Vinuchackravarthy [15] proposed a 
simple way to overcome this problem by averaging the 0.1% 
brightest pixels in each RGB channel after excluding the 
regions of sky and white objects. Like this method, we use 
the intensity channel of HSI color space to estimate A rather 
than RGB channels. 

Procedures of our method: 

1: get A by using the intensity channel; 

2: get the intensity channel and saturation channel from RGB 

channel; 

3: get W according to equation (4)~(6); 
4: get t according to equation (7), (10), (11), (14)~(17); 

5: get J according to (18). 

III. EXPERIMENT RESULTS 

In this section, we compare our results with that of Tarel 
[10], He [12], Zhu [14]. These experiments are executed on 
a computer with Inter(R) Core(TM) i5-4460 CPU @3.2GHz 
and 4GB RAM. Then the performance is quantified using 
Average Gradient (AG) and Structure Similarity Index 
Metric (SSIM) and processing time. An image with a high 
AG has a better clarity. A high SSIM represents a higher 
structure fidelity.  

 

Figure 1. From left to right: input hazy image, restored image by Tarel, He, Zhu, our method. 

 

Figure 2. From left to right: input hazy image, restored image by Tarel, He, Zhu, our method.  
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Figure 3. From left to right: input hazy image, restored image by Tarel, He, Zhu, our method.  

 
Figure 4. From left to right: input hazy image, restored image by Tarel, He, Zhu, our method. 

 

Figure 5. From left to right: input hazy image, restored image by Tarel, He, Zhu, our method.  

From Figure 1 to 5, the restored images by Tarel look 
brighter than others due to a brightness enhancement 
procedure since the results by Tarel normally look very dim 
if without brightness enhancement. Results by Tarel and He 
tend to have some residual haze near edges. Results by Zhu 
don’t show vivid ditail like others which is obvious from 
Figure 1 and 2 and is demonstrated in Table 1. Furthermore, 
Zhu’s method can’t handle dense hazy images well as 
shown in Figure 3 and 4. Results by our method don’t show 
residual haze and has more vivid detail which is 
demonstrated in Table 1. From Table 2, we can see that the 
structure fidelity by our method is comparable to others, 
which is close to that of Zhu and slightly smaller than that 
of Tarel and He. The good SSIM value by Zhu for Figure 3 
is because it doesn’t remove haze sufficiently From Table 3, 
we can see that the efficiency of our method is comparable 
to that of Zhu and much better than that of Tarel and He.  

TABLE I. AG /10-4 

Figure 1 2 3 4 5 

Input 

image 

1.3705 0.98419 0.44288 0.76624 0.62302 

Tarel 2.0760 1.6064 1.2676 0.98495 0.99939 

He 1.5906 1.8013 1.0722 0.81601 0.79585 

Zhu 1.0845 1.1276 0.55357 0.7989 0.60714 

Our 

method 

2.0761 2.0298 1.2088 1.2168 1.1606 
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TABLE II. SSIM 

Figure 1 2 3 4 5 

Tarel 0.9940 0.9963 0.9877 0.9971 0.9984 

He 0.9970 0.9976 0.9887 0.9961 0.9931 

Zhu 0.9920 0.9865 0.9934 0.9922 0.9899 

Our 

method 

0.9922 0.9873 0.9848 0.9913 0.9910 

TABLE III.PROCESSING TIME /SECONDS 

Figure 1 2 3 4 5 

Input 

image 
450*440 326*1000 600*400 768*1024 768*576 

Tarel 0.6472 1.1161 0.7263 2.6254 1.3868 

IV. CONCLUSION 

In this paper, we proposed a new dehazing method using 
a credibility term based on the saturation channel of HSI 
color space. We first estimated A using the intensity channel, 
then removed some high frequency components from W0 
and used it as a rough estimation of t. Then, we refined the 
rough estimation by multiplying a credibility term and a 
white-objects preserving term. We then obtained 
haze-removed images with more vivid detail and 
comparable structure fidelity while using very little 
processing time. 
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