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Abstract-In this paper we have developed a robust scalable 

hybrid scheme for Fast Parallel compositon of Dunhuang 

murals based on Matrix Tearing. The large cost associated 

with solution of partitioned linear systems, which is required to 

perform the matrix–vector multiplication, was avoided by 

presenting a scheme that requires only the solution of tiny 

linear systems of the same size as that of the overlap between 

two partitions. The difficulties associated with the multiple 

partition approach are resolved by using the reordering. 
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I.  INTRODUCTION  

Gradient-domain techniques are widely used in many 
applications, such as intrinsic image recovery[1], seamless 
cloning[2], and gradient domain painting[3]. Most of these 
methodologies share a common issue: solving the Poisson 
equation. Taking seamless cloning for example, instead of 
copying absolute values from the source images into 
composites, gradient-domain methods typically solve the 
Poisson equation where the gradients inside the cloned 
regions come from the source images and the Dirichlet 
boundary conditions are prescribed by the target images. 
However, solving the Poisson equation is a computational 
and memory intensive task, which makes common Poisson 
methods not suitable for real-time image processing. Besides, 
when dealing with large scale images, such as mega-pixel 
images and even gigapixels, this problem will be especially 
obvious. Various methods are proposed to settle this problem. 
These methods can be divided into two main categories: the 
solvers based on reduced space and the solvers based on 
numerical analysis techniques. The approach described in 
this paper belongs to the second category. 

In the first kind, some algorithm descriptions[4,5] 
transform full resolution images into reduced spaces, which 
substantially reduce both memory and computational 
requirements. In the other kind, we could also classify the 
methods into two groups: direct solvers and iterative solvers. 
Pardiso[6], MUMPS[7], and SuperLU[8] belong to the direct 
methods. Conjugate gradient[9], multigrid method[10], and 
streaming multigrid solver[11] are the commonly used 
iterative solvers. However, due to direct solvers’ poor 
scalability, they are not appropriate for large linear systems, 
while iterative solvers are not so robust and they usually take 
a great number of iterations to converge. In this paper, we 
propose a robust scalable hybrid scheme for Fast Parallel 
compositon of Dunhuang murals based on Matrix Tearing. 
The large cost associated with solution of partitioned linear 
systems, which is required to perform the matrix–vector 
multiplication, was avoided by presenting a scheme that 
requires only the solution of tiny linear systems of the same 

size as that of the overlap between two partitions. The 
difficulties associated with the multiple partition approach 
are resolved by using the reordering. We have also 
capitalized on the multilevel parallelism inherent in our 
scheme combining parallelism across nodes and shared 
memory within each node. 

II. RELATED WORK 

A.  Gradient-Domain Image Processing 

Psychologists have pointed that the human visual system 
is much more sensitive to local contrast than to slow changes 
in luminance and chrominance[13]. Retinex 
theory[14 ]suggests that humans achieve lightness constancy 
by perceiving scene lightness only through local luminance 
ratios at edges. In particular, slow luminance changes may be 
often superimposed over an image without a noticeable 
effect. Gradientdomain techniques can take advantages of 
these properties and are widely used in image processing. 
Image compositing aims at combiningmanysource images 
seamlessly into an entire image. It was first demonstrated 
that we can extract gradients from the sources to form a 
desired gradient field, and then solve for a new image whose 
pixel differences best match the desired gradients in least 
squares sense[2]. 

This operation has attracted considerable research 
attention in recent years. This basic method was later 
extended by Ref[4]. An interactive framework was 
constructed to generate an entire image by compositing 
regions of many sources into a photomontage. Another 
improved edition was later proposed[15], which optimized 
the boundaries of the copied regions when selecting the 
source patches. The gradient-domain compositing 
methodwas first used to deal with videos in 2004[16]. 
Acoordinate-based approach[17] was later introduced which 
performs seamless cloning as well as a number of other 
related operations ina directmanner instead of solving the 
Poissonequation. An interactive framework was constructed 
to generate an entire image by compositing regions of many 
sources into a photomontage. Another improved edition was 
later proposed[15], which optimized the boundaries of the 
copied regions when selecting the source patches. The 
gradient-domain compositing methodwas first used to deal 
with videos in 2004.16Acoordinate-based approach[17] was 
later introduced which performs seamless cloning as well as 
a number of other related operations ina directmanner instead 
of solving the Poissonequation. An error-tolerant gradient-
domain compositing method was proposed[18], which is 
robust to inaccuracies and prevents color bleeding without 
changing the boundary location. Gradient-domain techniques 
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are not only used for compositing image regions, however. 
Various applications can be performed based on gradient 
domain constraints, ranging from shadow removal[19], 
intrinsic image recovery,1 high dynamic range (HDR) 
compression[20], to flash artifact correction[21], alpha 
matting[22], gradient domain painting[23], reproducing 
photographic look[23], and image relighting[24]. 

B.  Sparse Matrix Solver 

There are two main classes of solvers for sparse linear 
systems: direct and iterative methods. Pardiso[6,18], 
MUMPS[7,19], and SuperLU8 belong to direct methods. 
Though the direct methods are quite efficient for rmany 
applications, they might still be quite costly when matrixes 
are very large. However, direct methods tend to be more 
robust than iterative ones, and this property makes them 
more suitable for “black-box” implementations. Commercial 
software developers appear to avoid implementing iterative 
solvers whenever possible. Iterative methods mainly consist 
of classical preconditioned Krylov subspace methods and 
preconditioned Richardson iterations. Unlike direct solvers, 
iterative methods (with classical black box preconditioners)  
are not as robust. This is true even with the most recent 
advances in creating lower upper (LU)-based 
preconditioners[20,21]. Approximate inverse preconditioners 
[22] are known to be more favorable for parallelism. The 
Spike algorithm[12] is a parallel solver for banded systems 
that combines direct and iterative methods, and it is one of 
the first examples of a hybrid linear system solver. In this 
paper, inspired by the Spike algorithm, we introduce a new 
parallel hybrid sparse linear system solver that contains both 
direct and iterative components. We show that our solver can 
overcome the drawbacks of direct and iterative solvers: it 
achieves better scalability than with direct solvers and is 
more robust than with classical preconditioned iterative 
solvers. 

III. ALGORITHM OVERVIEW 

In this section, we detail how we accomplish Fast 
Parallel Compositon of Dunhuang Murals based on Matrix 
Tearing. We illustrate the main idea of the algorithm using 
only two overlapped blocks. The generalization to multiple 
overlapped blocks is straightforward, e.g. see [15]. We are 
interested in solving linear systems of the form  

     (1) (1) 

where M ϵ     . 
Let us assume that A has been reordered, for example 

using reverse CutHill–Mckee [17] or spectral [19–21] 
reordering schemes, into the overlapped diagonal blocks 
below  

   

      

         

      

     
  
  
  
 , and    
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where, Mij,Xi and bi for i , j = 1 ,..., 3 are blocks of 
appropriate size. Let us define the partitions of M, delineated 
by lines in the illustration in (2), as 

     
   
      

   

   
      

   
            (3) 

where, except for the overlap,    
   

 =          for ∂,ω= 

0,1. The overlap    consists of the sum of the top left 
∂=ω=0 block of the second partition and the bottom 
right∂=ω=1 block of the first partition. In other words, for 

this block the following equality holds    
   

 +   
     =     . 

For clarity of presentation, we assume that the partitions are 
of equal size m and that each overlap is of size τ . Thus, we 
can rewrite (1) as two linear systems 
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where we choose the adjustment vector y such that the 
solution of the lower part of (4) coincides with the upper part 
of (5), in other words, 

    
      

   
  (6) 

Let us assume, for now, that each overlapped partition is 
nonsingular, and that 

    
    

   
      

   

   
      

   
  (7) 

Thus, using (4), (5) and (6) we obtain the balance system 

      (8) 

      
   
    

   
 (9) 

         
    

 

 
    

        
        

     
  
  
  

  (10) 

Notice that once the balance system (8) is solved for y, 
linear systems (4) and (5) can be solved independently in 
parallel. Since the coefficient matrix M is not available 
explicitly, we use a modified iterative method to solve the 
balance system (8), where we compute the residual and 
matrix–vector products as described below. 

   
   
    

         
    

 

 
      (11) 

Advances in Computer Science Research, volume 44

157



   
       

         
    

 

 
      (12) 

we obtain 

          
      

   
 (13) 

Consequently, considering an initial guess y init to be 
zero, the initial residual of the iterative solver can be 
computed as 

           
      

    (14) 

where 
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Since 

                (16) 

the matrix–vector product can be computed as 

       
       

      (17) 

where 
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  (18) 

Hence, in our modified iterative method the initial 
residual and matrix–vector products are computed using (14) 
and (17),respectively. Generalization to multiple partitions is 
straightforward and is outlined in [15]. 

IV. CONCLUSION 

In this paper we have developed a robust scalable hybrid 
scheme for Fast Parallel compositon of Dunhuang murals 
based on Matrix Tearing. The large cost associated with 
solution of partitioned linear systems, was avoided by 
presenting a scheme that requires only the solution of tiny 
linear systems of the same size as that of the overlap between 
two partitions. We have also capitalized on the multilevel 
parallelism inherent in our scheme combining parallelism 
across nodes and shared memory within each node. 

ACKNOWLEDGEMENTS 

This work was financially supported by the Zhejiang 
Province Natural Science Foundation (Y16F020023), 
Zhejiang Province Project" Key technology research and 
system development of image restoration based on 
convolutional neural network", Zhejiang Province Project 
“Research and development of real time rendering algorithm 

for super large scale 3D data for mobile terminal”, Zhejiang 
Province Project “Research on key technologies and system 
development of modeling and display of multi spectral 
materials for 3D printing ” and Zhejiang Province Project" 
Research on the key technology and system development of 
automatic generation of video virtual viewpoint for security 
monitoring". 

REFERENCES 

[1] Y. Weiss, “Deriving intrinsic images from image sequences,” in 

Computer Vision ICCV 2001, Proc. Eighth IEEE International 

Conference on IEEE, Vol. 2, pp. 68–75, IEEE Computer Society, 
Vancouver,Canada (2001). 

[2] P. Pérez et al., “Poisson image editing,” ACM Trans. Graphics (TOG) 
22(3), 313–318 (2003). 

[3] A. Orzan et al., “Diffusion curves: a vector representation for 
smoothshaded images,” ACM Trans. Graphics (TOG) 27(3) (2008).  

[4] A. Agarwala, “Efficient gradient-domain compositing using 
quadtrees,” ACM Trans. Graphics (TOG) 26(3) (2007). 

[5]  J. Kopf et al., “Joint bilateral upsampling,” ACM Trans. Graphics  
(TOG) 26(3) (2007). 

[6] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of 

linear equations with PARDISO,” Future Gener. Comput. Syst. 20(3), 
475–487 (2004). 

[7] P. R. Amestoy et al., “Hybrid scheduling for the parallel solution of 
linear systems,” Parallel Comput. 32(2), 136–156 (2006). 

[8] X. S. Li and J. W. Demmel, “SuperLU_DIST: a scalable distributed-

memory sparse direct solver for unsymmetric linear systems,” ACM 
Trans. Math. Software (TOMS) 29(2), 110–140 (2003). 

[9] J. R. Shewchuk, “An introduction to the conjugate gradient method 

without the agonizing pain,” School of Computer Science Carnegie  

Mellon University Pittsburgh, http://www.cs.cmu.edu/~quake-papers/ 
painless-conjugate-gradient.pdf (4 August 1994). 

[10] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., PWS 
publishing company, Boston (2003). 

[11] [11]. M. Kazhdan and H. Hoppe, “Streaming multigrid for gradient-

domain operations on large images,” ACM Trans. Graphics (TOG) 
27(3) (2008). 

[12] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver: 
the SPIKE algorithm,” Parallel Comput. 32(2), 177–194 (2006). 

[13] S. E. Palmer, Vision Science: Photons to Phenomenology, MIT Press, 
Cambridge, MA (1999). 

[14] E. H. Land, The Retinex Theory of Color Vision, Scientific American, 
USA (1977). 

[15]  J. Jia et al., “Drag-and-drop pasting,” ACM Trans. Graph. (TOG) 
25(3), 631–637 (2006). 

[16] O. Schenk and K. Gärtner, “On fast factorization pivoting methods 

for sparse symmetric indefinite systems,” Electron. Trans. Num. Anal. 
23, 158–179 (2006). 

[17] P. R. Amestoy et al., “A fully asynchronous multifrontal solver using 

distributed dynamic scheduling,” SIAM J. Matrix Anal. Appl. 23(1), 
15–41 (2001). 

[18] M. Benzi et al., “Orderings for incomplete factorization 

preconditioning of nonsymmetric problems,” SIAM J. Sci. Comput. 
20(5), 1652–1670 (1999). 

[19] M. Benzi et al., “Preconditioning highly indefinite and nonsymmetric  
matrices,” SIAM J. Sci. Comput. 22(4), 1333–1353 (2000). 

[20] M. Benzi et al., “A sparse approximate inverse preconditioner for the  
conjugate gradient method,” SIAM J. Sci. Comput. 17(5), 1135–1149

 

Advances in Computer Science Research, volume 44

158




