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Abstract-The aggregation of residents’ private data drives 

improvements in the smart homes, however it comes with 

compromising on privacy. Hence, privacy preservation has 

become an increasing requirement for residents. Since users 

might have different privacy requirements, and their privacy 

requirements might be sensitive information, smart homes 

need a privacy preservation scheme to meet their demands. In 

this scheme, a user preserves the privacy of his/her data and 

privacy level locally by specifying his own privacy level in 

confidence, without trusting anyone else in smart homes. In 

addition, a user replies a single data element to the collector 

each time, instead of the whole dataset. It makes the scheme 

more challenging than the traditional centralized situation. In 

this paper, we propose a novel personalized local differential 

privacy preservation scheme for smart homes, which retains 

desirable utility while providing rigorous privacy guarantee. 

Keywords-smart homes; aggregation; differential privacy; 

local; personalized 

I. INTRODUCTION 

With the rapid development of smart homes, it becomes 
inevitable to optimize resources and provide better service 
through aggregating data from users. For instance, smart 
homes can analyze the preferential temperature distribution 
utilizing the collected data, further ascertain the most 
commonplace temperature; in order to deliver appropriate 
services, it needs to discover the age structure of the 
residents. Nevertheless, dwellers' privacy requirement has 
been a vast obstacle to the widespread participation of 
contributing data to the collector [5]. Users would not like 
to share their sensitive information unless their privacy 
issues have been resolved appropriately. On the other hand, 
the collector will obtain a more accurate statistics estimation 
accompanied by the increasing contributors in smart homes. 
Due to the condition that the information from a single 
resident is not indispensable to analysis results, we can start 
from this point to preserve users' privacy while not 
comprising data utility too much. That is to say, we can find 
a scheme which fulfils the collection and analysis of sensor 
data, avoiding the privacy risks of participants' information 
simultaneously. 

Differential privacy [12] is the state of the art privacy 
definition which aims to resolve the privacy risk in the 
process of data statistics. It has been certified that differential 
privacy can provide rigorous privacy guarantees, regardless 
of the background knowledge and computing power an 
adversary has. However, privacy preservation for smart 
homes belongs to a new differential privacy mechanism 
which is named local privacy [16]. The local privacy refers 

that the privacy protection algorithm is performed locally on 
residents' sensor devices. Another feature is that this mode 
doesn't need a trustable third-party. Moreover, the solicited 
privacy data is a piece of data, not a database. Therefore, the 
two common mechanisms of traditional differential privacy, 
that is the Laplace mechanism and the exponential 
mechanism [1], are not appropriate for the local mode. Since 
smart homes consist of multiple users with different privacy 
exceptions, a collector is confronted with a predicament 
which limits aggregation scheme. One possible solution is to 
set the global privacy budget to satisfy every user. This is 
likely to introduce too much noise that data utility will be 
extensively influenced. Another is to set a higher identical 
privacy budget to meet most of the users' demand. However, 
this option will also do harm to data utility. Therefore, we 
need to devise a personalized local differential privacy 
scheme which takes different privacy requirements of each 
resident into account. The personality means each 
contributed resident can specify themselves privacy budget, 
and retain the budget secretly. The aggregation will benefit a 
lot from the flexibility of personalized scheme. 

In this paper, we propose a personalized 
privacy-preserving data analytics scheme for smart homes. 
In this scheme, we can maintain data utility and preserve 
privacy simultaneously. Specifically, this paper makes the 
following contributions: 
 We formulate the privacy preservation issue in smart 

homes. In response to users' natural personalized 
privacy requirements, we design a novel 
personalized differential privacy scheme. It uses the 
binary randomized response mechanism as the 
building block. The scheme provides a better 
trade-off between privacy and utility. Apart from the 
scenario in smart homes, our scheme is also 
appropriate for other aggregation tasks. 

 We propose a two-stage randomized response 
mechanism that satisfies the demand of real-time 
data collection. It also keeps residents' privacy 
budgets from any other nodes in smart homes, 
including the collector. In order to minimize the 
maximum estimation error, we devise a solution 
tailored to this problem. Moreover, our mechanism 
is lightweight to be deployed on local sensors. 

 We conduct simulations to evaluate the performance 
of our proposed scheme. The simulation results not 
only show that the scheme provides a better trade-off 
between privacy and utility, but also reveal that the 
accuracy of estimation improves with the number 
and privacy budget of participates increasing. 
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The rest of this paper is structured as follows. Section II 
reviews the related work. Section III introduces the 
definition of the local differential privacy and the 
personalized local differential privacy. Section IV presents 
our randomized response algorithm. Section V discusses the 
privacy preservation framework in detail. Section VI shows 
our experimental results. In the end, Section VII concludes 
our work. 

II. RELATED WORK 

A Privacy Data Aggregation for Smart Homes 

The aim of privacy preservation is to protect users' 
privacy from others, while collecting and analyzing private 
information. Privacy concerns from smart homes have been 
proposed in plenty of literatures (e.g. in [13], [14]). The 
work [6] proposed a framework which is based upon 
k-anonymity and role access control. Residents specify 
privacy levels according to the role of the data collector, then 
accomplish privacy preservation with k-anonymity algorithm. 
The work [9] introduced a dynamic method for modifying 
privacy in smart homes, based on the context using data 
hiding techniques to decrease the invasiveness, and retaining 
the functionality at the same time. However, these previous 
works can’t provide theoretical privacy guarantees as 
differential privacy [12]. 

B Local Differential Privacy 

The concept of local differential privacy was first 
proposed by S. P. Kasiviswanathan et al. in [16]. The authors 
of [4] proposed a scheme RAPPOR that addresses the 
problem of longitudinal data collection with local differential 
privacy. The work [17] presented a new mechanism named 
k-ary Randomized Response to estimate discrete distribution 
under local privacy. Reference [15] introduced general 
approaches to get minimax bounds under LDP.  

C Personalized Privacy 

Jorgensen, Yu and Cormode [18] proposed a 
personalized differential privacy mechanism with a trustable 
data analyst. The algorithm of privacy protection is not 
performed on local clients. Wang et al. [5] introduced a data 
aggregation scheme that provides personalized privacy 
preservation for participants. However, the scheme can’t 
satisfy the need for real-time and multiple times data 
collection, and it also introduces too much noise. 

To our best knowledge, there hasn’t been an existing 
work that applies personalized local differential privacy 
(PLDP) mechanism to data collection for smart homes. We 
design a scheme utilizes PLDP to protect users’ sensitive 
information longitudinally. 

III. PRELIMINARIES 

A. Local Differential Privacy 

Local differential privacy (LDP) [16] is a rigorous 
privacy notion in local setting, which provides a more tough 
privacy guarantee than the traditional differential privacy. It 
is because the mechanism needn’t any trustable third-party. 
This is, users protect their private data from anyone else by 

themselves. They won’t report their private data to the 
collector unless their private data have been properly 
sanitized locally. The collector makes an analysis on 
received perturbed data. Despite owning the perturbed 
information, any adversaries can’t infer the users' true data, 
independent of their background knowledge and 
computational power. Another feature of local differential 
privacy is that the collected information is usually a single 
data element (e.g.., the time of sleep), not a dataset. Formally, 
local differential privacy is given below. 

Definition 1 (Local Differential Privacy [16]): A 
randomized   algorithm satisfies ϵ-local differential privacy, 
if for all pairs of values m and m'   D, and for all M 
⊆Range( ), 

P[ (m)  M] ≤ exp(ϵ) P[ (m')  M], 
where ϵ denotes privacy budget, and D is the domain of 
privacy data. 

As a result, LDP is performed with a single data instead 
of a dataset, it provides more rigorous privacy protection 
than traditional differential privacy. However, LDP 
introduces too much noise because the size of D is 
commonly very large. Hence, it's often difficult to achieve a 
fine trade-off between privacy and utility. Besides, users 
can't choose privacy levels by themselves. Because of these 
two drawbacks, we introduce a more effective personalized 
local differential privacy to overcome these two 
shortcomings. 

B. Personalized Local Differential Privacy 

Personalized local differential privacy (PLDP) is a novel 
notion based on LDP, it satisfies different privacy 
requirements of users. Personalization means that users can 
specify their privacy budgets without sharing with others. 
The flexibility of PLDP makes more users be willing to 
participate in data aggregation tasks, and improves data 
utility. In order to further improve performance, we propose 
the concept of security domain [s, e] in this paper. The 
security domain refers to the minimum acceptable domain of 
a user's private data. For instance, in smart homes, the 
collector collects residents’ age information. By setting 
his/her security domain to [20, 30], a resident whose true age 
is 23 doesn't mind the replied value in [20, 30], but the 
collector doesn't know whether the data collected is the 
resident's real age. Moreover, users can specify their security 
domain according to their own requirements. In this manner, 
we can decrease the noise introduced by PLDP mechanism. 

Definition 2 (Personalized Local Differential Privacy): A 
randomized   algorithm satisfies (s, e, ϵ)- personalized 
local differential privacy, if for all pairs of values m and 
m' D, and for all M ⊆Range( ), 

P[ (m)  M] ≤ exp(ϵ) P[ (m')  M], 
where [s, e] denotes security domain. 

IV. THE RANDOMIZED RESPONSE MECHANISM 

A. Two-Stage Binary Randomized Response 

Two-stage binary randomized response(TBRR) consists 
of two detached but compact randomized responses on 
Bloom Filter [2]. Randomized response technique(RRT) [3] 
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is an effective method to collect sensitive information while 
protecting the confidentiality of information. For instance, a 
user's private information is m, he/she flips a coin secretly, 
replies with m if the coin comes up head, otherwise select a 
value from the range of m randomly. Others cannot 
distinguish the received data from the true data m. In this 
way, the user has plausible deniability of any his/her answers. 
PLDP uses the feature of RRT to protect privacy locally. 

Unfortunately, the privacy budget provided by RRT is 
ln(|D|+1), it will become larger with |D| increasing, D 
denotes the range of m, and |D| refers to the size of D. Lately 
the authors of [4] proposed an algorithm that maps a value m 
to a Bloom filter before applying randomized response 
strategy. 

A Bloom Filter is comprised of a long binary vector and 
a series of pseudorandom hash functions. It's used to judge 
whether an element belongs to the specified set. Applying 
Bloom Filter into RRT, we can obtain privacy budgets 
independent of the value of |D|. TBRR is performed on local 
sensors in smart homes as the following steps with 
parameters (d, s, t, p, q). 

1) Initialize Bloom filter 
Map the user's value m to a position in a Bloom filter B 

using the selected hash function. The size of B is d. 

2) The first stage of TBRR 
First of all, set the corresponding security domain as [s, 

e]. For every bit i in B, if s≤        ≤ e in B, apply the 
following RRT mechanism to create two new binary arrays 
B1 and B2: 

              

 ,    with probability     

 ,     with probability     

  ,   with probability  - 

  and 

              

 ,    with probability     

 ,     with probability     

  ,   with probability  - 

  , 

where p is the probability argument specified by users, and it 
decides the user's privacy level. Meanwhile, it also reflects 
the personalization of TBRR. 

3) The second stage of TBRR 
Initialize a binary array B' with size d, set all its bits to 0. 

Then, for each bit in B1 and B2, apply the following RRT 

mechanism to modify the array   . 

B'i  

 , with probability  ,  if           
  with probability  , if          

  with probability  ,  if          

 , 

where q is the probability parameter assigned by collector. 
TBRR satisfies the demands of real-time and multiple times 
collections. 

4) Report 
Respond the perturbed binary array B' to the data 

collector in smart homes. 

B. Differential Privacy of TBRR 

The TBBR mechanism protects privacy through 
introducing uncertainty using two different RRT 

mechanisms. We have proved our scheme satisfies 
Definition 2.  

THEOREM 1: The Two-stage binary randomized 
response mechanism satisfies (s, e, ϵ)-personalized local 
differential privacy, 

 ϵ  ln
a   -b 

b   -a 
. (1) 

Where a=(1-0.5p)
2
+pq(1-0.5p), and b =0.25p

2
+pq(1-0.5p).  

PROFF. Let x be the original Bloom filter, y be the B1, z 
be the B2 and r be the reported array B' generated by TBBR 
Since (1) and (2), corresponding probabilities are 
    P(yi=1|xi=1) = 1-0.5p and 
    P(yi=1|xi=0) = 0.5p when s≤H

-1
(i)≤e. 

    P(zi=1|xi=1) = 1-0.5p and 
    P(zi=1|xi=0) = 0.5p when s≤H

-1
(i)≤e. 

Then 
    P(ri=1|xi=1) =(1-0.5p)

2
+pq(1-0.5p) =a 

    P(ri=1|xi=0) =0.25p
2
+pq(1-0.5p) =b 

    P(ri=0|xi=1) =0.25p
2
+p(1-q) (1-0.5p) =1-a 

    P(ri=0|xi=0) =(1-0.5p)
2
+p(1-q) (1-0.5p) =1-b. 

Without loss of generality, let x be x*= {1, 0, 0, ..., 0}, 
the security domain be [1, d], the conditional probability is 

P(B'=r|B=x*) =        -  
 -  

   b       -  
 -  

     

      
     -  

 -  
  

Based on [4], the ratio of two conditional probabilities is 

   
   

 
      

   
   

 
      

≤
max

  
   

 
   

 
   

 
      

P  
 
   

 
      

 

            
       

       
.    

Consequently, the TBRR mechanism has been proved it 
can provide (s, e, ϵ)- personalized local differential privacy. 

In smart homes, the collector needs to aggregate data 
from sensors real-time. An adversary can obtain abundant 
reports from a resident, this might lead risks to the user’s 
privacy. To defense underlying longitudinal attacks, we have 
to apply randomized response twice. In the first stage of 
TBRR, we use two Bloom filters to increase the uncertainty 
of users’ responses. The TBRR mechanism makes it more 
difficult for attackers to infer users’ private information. It 
can satisfy the demand for real-time data collection in smart 
homes. 

V. THE DECODE AND ANALYSIS SCHEME 

In section IV, we have introduced the data collection 
scheme which provides personalized local differential 
privacy for residents' sensitive information. We will propose 
the decode and analysis scheme in this section. 

A. High-precision Estimation of Privacy Budgets 

To estimate users’ unperturbed Bloom filters, the 
collector needs to know the probability p. Nevertheless, 
since the value of p is the crux to protect the user's privacy 
budget from others, p is unknown to the collector. In most 
cases, privacy budgets themselves are also sensitive 
information for users, we have to employ the feature of 
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Bloom filter to protect users' privacy budgets. If p is public 
to the collector, the privacy budget will be known to the 
collector, then the user's information will face the risk to 
privacy. Therefore, we must estimate the value of p for the 
next work. 

We propose a high-precision estimation method of 
privacy budgets here. Based on Theorem 1, we know that the 
privacy budget ϵ is the function of p (q is uniform to in the 
whole smart home). So we need to estimate the value of p to 
evaluate  . The collected data from a user are just a private 
Bloom filter and its corresponding security domain. The 
collector can only estimate the value of p through these two 
data. The collected private Bloom filter consists of one and 
zero, and the security domain specifies the different range 
between the non-private Bloom filter and the private one. 

Let X be the number of ones in the received Bloom filter 
and [s, e] be the security domain, we know that the 
expectation of X is: 

 E[X] = a + (e-s) b. (2) 

Then, we can deduce the following equation: 

 E[X] = 0.25 (1-2q) (e-s+1)  p2 
+ [q (e-s+1)-1]  p+ 1.(3) 

When q=0.5, the solution of the above equation is 
p=2(X-1)/(e-s-1); but when q 0.5, the solution is 

  
                           

 
             

    
 

Equation (3) shows we can make use of X to estimate the 
value of p, further find out users’ privacy budgets. 

Compared to the condition that the collector shares the 
privacy budget with a user, the estimation strategy inevitably 
introduces a little noise to the value of p. However, the 
strategy brings two benefits to the collector. One is that 
makes more users in smart homes be willing to contribute 
their information for aggregation. Another is what implies 
residents choose lower privacy levels, further is beneficial to 
the decoding precision of collected private data. 

B. High-accuracy Decode 

In order to learn the frequency of each investigated data, 
the collector needs to estimate the number of ones in its 
corresponding bit among all original Bloom filters. 
Assuming that there are N respondents in the smart home, 
and the number of ones in each bit i is Oi for all Bloom 
filters. Mi denotes the accumulation of the i-th bit which 
belongs to its relevant security domain. When every 
respondent has a common privacy budget in the smart home, 
the expected number of ones on the i-th bit among all 
collected perturbed Bloom filters is given as follows: 

 E[Ci] = Oi a + (Mi - Oi). (4) 

Similarly, to estimate the value of Oi, the collector needs to 
count the number of ones on the i-th bit among all private 

Bloom filters Ci and the value of Mi. Then solves (4), we can 
get the following equation: 

 E       
  -   

 - 
. (5) 

Since every respondent may choose a distinct privacy 
level, the above equation no longer applies to the scenario 
we present in this paper. We now have to extend the 
estimating method in (5) to the case users’ privacy budgets 
are diverse. By means of a little deformation to (5), we get 
the streaming of form of (5) which implies that the 
estimation of Oi is an accumulation of ones and zeros in the 
i-th bit which belongs to security domains. Consequently, the 
estimation of Oi which applies to the personalized situation 
is given by 

 E  i    
   -b - b

 i
k Ci  

Ci
k  

a-b
. (6) 

By making use of the streaming form estimate method to 
each bit of personalized perturbed Bloom filters, we obtain a 
vector composed by Oi, i    ,   . The vector is denoted by V, 
and its elements represent the estimated count of ones on 
each bit among original Bloom filters. During aggregation, 
the collector applies (6) to incrementally add weight to 
vector V at every received private Bloom filter B'. 

C. The Privacy Preservation Framework for Smart Homes 

In this subsection, we present the whole privacy 
preservation framework for data collection and analysis. It 
aggregates residents' personalized private data at the same 
time preserving their sensitive data and privacy budgets in 
smart homes. 
 Configure Parameters: The data collector publishes 

global parameters to every potential contributor in 
smart homes before collection. The global 
parameters include the length of Bloom filters d and 
the probability q. Communication between residents 
and the collector through unsecure networks should 
be protected. To avoid any adversary to tamper the 
global parameters maliciously, confidentiality and 
integrity should be ensured for any data transfer. 
VPN technique [10] is a commonly used approach 
for securely transferring sensitive data. 

 Solicit: The collector sends a query request on a 
topic of interest to every potential contributor. 

 Randomized Response: Each resident either declines 
or replies the query request after he/she receives a 
query quest and global parameters. When a resident 
holding a sensitive m decides to share his/her 
sensitive information to the collector, he/she should 
select a personalized privacy budget to deduce the 
probability p according to Theorem 1. Furthermore, 
the willing resident still needs to specify his/her 
preferred security domain [s, e], then obtains a 
private Bloom filter B' with the use of two-stage 
binary randomized response algorithm. Finally, the 
resident sends the collector the perturbed Bloom 
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filter B' and its corresponding data secure range [s, 
e]. 

 Collect: After receiving a response consisting of    
and [s, e], the collector firstly counts the number of 
ones in   , denoted by X, and makes use of the 
estimation of privacy budgets algorithm to get the 
values of a and b. Then the collector utilizes (6) to 
obtain the aggregated vector V. V contains the 
numbers of ones among all collected private Bloom 
filters on each bit. 

 Decode: Let I be the set of candidate values among 
participants in smart homes, and    be the j-th value 

of I. Be same with decoding process in RAPPOR, 
the collector firstly constructs a matrix M of size 
   , where n is the size of I. M is a sparse matrix 
where each column is mostly zero with just a one at 
the Bloom filters for every value in I. The key work 
is to make use of the collected array V and matrix M 
to infer frequency of each element in interest set I. 
Then the collector applies linear regression 
technique to fit a model V   M. The non-zero 
coefficients are the estimated numbers of their 
corresponding candidate values of this collection. 

VI. SIMULATIONS AND EVALUATION 

In this section, we evaluate the performance of our 
privacy preservation scheme for smart homes, and verify our 
proposed data collection and analysis framework over four 
different synthetic datasets. 

The first dataset norm-age we use consists of residents' 
ages that complies with a normal distribution. The exp-age 
dataset contains residents' age information whose 
frequencies display exponential decay. The last two datasets 
unif-t1 and unif-t2 are all drawn from simulating participants' 
preference temperatures in smart homes. The two datasets 
exhibit uniform distribution. The synthetic normal 
distribution has mean 50 and standard deviation 10, and its 
corresponding age range is [0, 100]. The simulated 
exponential distribution has standard deviation 20 with the 
relevant set of age [0, 100]. The first uniform distribution 
ranges from [10, 30], and the second is in the interval [20, 
30]. The length of Bloom filters we use in all simulations is 
128. 

Our main goal of this experimental study is to validate 
that by taking personal privacy budgets and security domains 
into account, our mechanism can usually get more accurate 
data analysis results, compared to RAPPOR mechanism 
proposed in [6], which provides a uniform privacy budget. 
To that aim, we compare the two methods of privacy 
preservation, in terms of estimation accuracy, KL divergence 
under different data distributions. 

A. Accuracy of Estimation 

In retrospect, our motivation is to enable an untrusted 
collector accurately learn users’ information distribution. 
This goal can be precisely measured by accuracy of 
estimation. The accuracy criteria we use here is mean 
relative error (MRE). For each actual frequency Fi, if its 

corresponding estimated frequency is Fi' where i belongs to 
the set I, we know the mean relative error is given by: 

  E 
    

 
       

      

 

The simulations are performed with    ,    residents’ 
reports. For the convenience of experiments, we specify a 
uniform privacy budget for every participant. The privacy 
constraints are: p=0.5 and q=0.5 providing ϵ=2ln(3) 
differential privacy. In order to compare with PLDP, the 
simulations on RAPPOR mechanism also provide ϵ =2ln(3) 
differential privacy with p=1/6, q=5/6, f=0.25 and one 
function. 

 

 
Figure 1.  Distribution curves of different schemes. 

TABLE I.  ACCURACIES OF ESTIMATION UNDER DIVERSE 

SCHEMES 

Dataset norm-age exp-age unif-t1 unif-t2 

PLDP-1 0.22352 0.22222 0.2334 0.23482 

RAPPOR 0.25187 0.92107 0.2249 0.22662 

PLDP-2 0.06766 0.16744 0.13241 0.12281 

We conduct three simulations on four kinds of datasets 
severally to compare the performance between the two 
mechanism comprehensively. The first experiment performs 
our proposed algorithm without security domain, denoted by 
PLDP-1 here, that is to say, the security domain is the 
overall range of candidate values; the second one also 
performs our PLDP algorithm, but with security domain 
[mi-d, mi+d] where mi is the resident ui’s sensitive data, 
simply denoted by PLDP-2; the last one we simulate makes 
use of the RAPPOR algorithm, signified by RAPPOR. For 
the normal distribution simulations, the users specify their 
security domains as [mi-5, mi+5]; in the second set of 
simulations, simply denoted by PLDP-2; the last one we 
simulate makes use of the RAPPOR algorithm, signified by 
RAPPOR. For the normal distribution simulations, the users 
specify their security domains as [mi-5, mi +5]; in the second 
set of simulations, the users specify [mi -10, mi+10] as their 
security domains; in the last two groups, the users specify 
[mi-0.5, mi+0.5] as their security domains. 

We conduct 16 simulation experiments in total, and these 
simulations are divided into four groups which are denoted 
by norm, exp, unif-1 and unif-2 respectively. To compare the 
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performance of different approaches, we use Original to 
denote the original distribution without noise in each group.  
We give the distribution curves and accuracies of estimation 
under diverse schemes in Figure 1 and Table I respectively. 
It can be observed that the personalized local differential 
privacy with security domain scheme we propose 
substantially outperforms other two schemes. We highlight 
the smallest accuracies of estimation in Table I. And the 
simulation results also show that there is no obvious 
divergence between PLDP-1 scheme and RAPPOR except 
the selected dataset is exp-age. However, the results of the 
second group indicate that PLPD scheme exceeds RAPPOR 
too much when users’ data obey exponential distribution. 

Then we can conclude that the performance of our 
personalized scheme is approximate to RAPPOR scheme, 
although estimating privacy budgets brings much more noise 
than RAPPOR mechanism. And after applying individual 
security domain, PLDP obtains reasonably small error for all 
four datasets. Roughly, the difference between PLDP-1 and 
PLDP-2 proves the benefit of introducing the notion of 
security domain. In addition, the proposed scheme also 
protects users’ personalized privacy requirements, and the 
process of data collection and analysis will benefit from this 
feature of our scheme 

B. KL Divergence 

Other than estimating frequencies, we need also to 
accurately learn residents’ information distribution over 
some domain. KL divergence expresses the discrepancy 
between estimated distribution and actual distribution. We 
use it to evaluate the impact of PLDP-2 mechanism on data 
distribution now. Moreover, to better get a sense of the effect 
of our approach, we also simulate with RAPPOR mechanism 
on all the synthetic datasets. The number of contributed 
residents is 100,000, and the adopted privacy budget is 2ln3 
among all simulations. We give the KL divergences of 
PLDP-2 and RAPPOR over the four datasets in Table II. We 
emphasize the smaller KL divergences, and find out that 
PLDP-2 is always superior to RAPPOR. All these results 
together validate the importance of our personalized local 
differential privacy model for smart homes. 

TABLE II.  KL DIVERGENCE UNDER DIVERSE SCHEMES 

Dataset norm-age exp-age unif-t1 unif-t2 

RAPPOR 0.25390 0.28128 0.039988 0.038032 

PLDP-2 0.00573 0.03576 0.013245 0.011569 

C. Benefits of Personalized Privacy 

In the last set of experiments, we study the performance 
of our framework under different privacy budgets and 
number of participants. The simulations with 100,000 
residents are denoted by less, and more indicates the 
simulations with 200,000 residents in Fig.2. 

As can be observed in Fig.2, PLDP-2 is quite effective. 
In the worst case, it still provides high estimation accuracy 
where the chosen privacy budget is enough small. We can 
further observe that in practice the relative error of PLDP-2 
roughly decrease linearly with the adopted privacy budgets 
increasing. Fig.3 also shows that the more cases have higher 

frequencies estimation accuracies than the less cases. This 
implies that the collector could obtain more precise results 
with the number of contributed residents growing. 

 
Figure 2.  Relative error under different settings. 

All the experimental results demonstrate that the avenues 
of applying personalized local differential privacy with 
security domain to data privacy cloaking. Using the privacy 
preservation scheme for smart homes, as a result of being 
able to specify privacy budget and keep it from others, 
residents tend to share their sensitive information with the 
collector. Besides the collector also don’t need to choose an 
enough small privacy budget to satisfy every participant. The 
collector will benefit from more participants and larger 
privacy budgets. These results together show that our 
proposed PLDP-2 scheme is very appropriate for privacy 
preservation in smart homes. 

VII. CONCLUSION 

We have introduced a personalized local privacy- 
preserving scheme with security domain. The scheme 
combines the strength of differential privacy with the added 
flexibility of user-specific privacy levels and security 
domains. Mechanisms based on Bloom filters and binary 
response can achieve PLDP-2 effectively and efficiently. 
The proposed mechanism provides a more desirable 
trade-off between privacy preservation and data utility for 
smart homes than RAPPOR mechanism. Furthermore, since 
custom privacy budgets are potentially sensitive information 
for contributed residents under local setting, we propose an 
estimation algorithm to protect them. As the building block 
scheme. And we believe that our work belongs to an 
important step to better privacy protection in data collection 
and analysis for smart homes. 
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