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Abstract-Aiming at difficulties for vehicle tracking on the 

specific scenes such as fast motion, rotation, drastic 
illumination and scale change, a new discriminative tracking 

algorithm for moving vehicles is proposed in this paper. We 
incorporate low-rank sparse representation and dictionary 
learning with the classical particle filter algorithm. Based on 

unmanned multi-rotor aircraft, we apply the enhanced 
algorithm to track selected vehicle in the urban road, 
demonstrate the performance of our method on the process of 

vehicle tracking in above scenes. The proposed approach is 
different from conventional discriminative tracking algorithm. 
Compared with related methods, experimental results show 
that the proposed algorithm improves the synthesized 

efficiency of tracking process, the experiments based on 
standard testing videos demonstrate that tracking successful 
rate is significantly improved. 

Keywords-object tracking; online classifier; sparse 
representation; Particle filter; dictionary learning 

I. INTRODUCTION  

The main challenge of designing a robust visual tracker 

exists in the aspect of object appearance variations in 

sequential images. The design of flexible and reasonable 
tracking model which can adapt to aforementioned 

appearance variations is an important subject
[1]

. Some 

existing algorithms based on statistic principles were widely 
used in visual tracking domain for their effective 

experimental results on the controlled environments. 

However these statistic algorithms
[2]

 are merely involved 

with the corresponding parameters based on local 
characteristic such as texture, edge and color histogram etc.. 

These algorithms usually fail to track the object accurately 

over some period of time, due to drastic change in the object 
appearance. 

Sparse representations can provide a compact 

approximate encoding of a large set of images. These sparse 
representations denote a subset of the training images. 

Previous work on sparse representations has addressed on 

the subject about face recognitions and has rarely 
concentrated on the aspect of tracking object. Previous 

sparse approaches[2,3] have commonly tested on fixed 

image database such as YELU face database in object 
recognition. Although numerous vision-based recognition 

and trackers using sparse representation were proposed, 

sparse representations and online learning methods were 
only studied and applied in a very small portion of these 

methods [4,5]. Occlusion is one of the most challenging 

problems in object tracking process[6]. The tracker handles 
partial occlusion via ℓ1 minimization at the expense of high 

computational cost. Due to sampling from ambiguous region 

and the occluded target, the reconstruction errors of image 
regions are very likely to accumulate and finally cause 

tracking failure[7]. 

II. OUR TRACKING METHOD USING LOW-RANK 

SPARSE AND PARTICLE FILTER 

In this paper, we pose object tracking process as binary 
classification problem where the primary task is to 

distinguish target image region from the background. Firstly, 

low-rank sparse representation and 21 /   sparse coding are 

used to extraction of SIFT features, a spatial pyramid 
representation for each object image can be obtained. For 

subsequent efficient object tracking process, low-rank 

sparsity and constraint are exploited to learn robust linear 
representations corresponding to candidate particles. 

A. Representation by Sparse Coding and Dictionary 
Learning 

At time t, let xi denote the observation with respect to i-

th particle, nmXXX  R],...,[ N1
denote the corresponding 

SIFT descriptor extracted from object image observations, 
where m and n are the dimensionality of SIFT descriptor. 

Each observation from a dictionary is represented by Dt = 

[d1, d2, …, dm], X0 can be calculated by [8]: 

 X0 = DtZt +E (1) 

where the columns of ],...,,[ 21 nt zzzZ   are the 

representations of particle observations with respect to 

dictionary Dt , E is the error due to noise such as occlusion 

and illumination. In our work, we solve the following 

equation efficiently using the learning about dictionary Dt.. 
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where 
1  ,

2  and 
3  are regularization parameters. We 

adopt nuclear norm 
iZ  to minimize its convex envelope. 

Symbol
iZ  represents low-rank sparse representation in 

Eq.2. 
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B. Classifier Learning with Sparse Representation and 
Multi-scale Max Pooling 

To initialize the classifier, we collect some target images 
as positive samples, and background images as negative 
samples in the preprocessing stage. Compared with raw 
image features, it is easier to separate the target object from 
the background with low-rank sparse representation and 
dictionary. In this paper, we adopt a feature pooling function 
to better describe object level feature for target samples. The 
feature pooling function operates on each row of sparse 
coefficient matrix: 

  niii ZZb ,1, ,...,max  (3) 

The max pooling
[9]

 is well demonstrated with biophysical 
evidence in visual cortex, we adopt the following multi-scale 
max pooling to preserve spatial information and geometric 
shape: 

 
TT
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1 ],...,[ bbz   (4) 

The training image set is composed of positive and 
negative samples, we draw positive and negative samples 
around the labeled target location in this paper. Using the 
above sparse coding of each image patch, positive and 
negative sample sets are to be computed to form the training 

data denoted by  M

1
,

iii yZ  , where M is the number of 

training samples, dn

iZ 2R  , class label  1,1iy . After 

extracting SIFT descriptors, we effectually obtain a set of 
training data representing target and background images by 
sparse coding and multi-scale max pooling. With the training 
data, The linear classifier is learned by minimizing the 
following cost function[10]:  
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where   is a loss function, λ is the number of training 
samples, Parameter λ controls the strength of the 
regularization term, symbol w denotes the classifier 
parameter set we want to learn. The corresponding classifier 
score with the learned classifier can be computed by[11]: 
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III. ONLINE TRACKING PROCESS  

Generally, we use two main steps to obtain the tracking 
result. Firstly, we use the online classifier to estimate the 
most probable tracking location by computing the 
corresponding classifier score, and form target positive 
samples and background negative samples. Secondly, we use 
particle filter with the recent observation data and associated 
parameters to determine the final tracking result. Fig.1 shows 
the main parts of our tracking algorithm. 

 
Figure 1. Our tracking algorithm. 

Our algorithm is summarized as follows: 
for t = 1,…,T do 

if t = 1 then  
Extract the SIFT descriptors from overlapped patches 
of raw images, then perform sparse coding by Eq.1, 
and construct the initial dictionary Dt and multi-scale 
max pooling Z. Initialize the online classifier with Z. 

else 
 Collect target positive samples and background 

negative samples, form the training data denoted by 

 M

1
,

iii yZ . Minimize the cost function J(w), and 

acquire classifier score f(Z). 
 Perform particle filtering to estimate the target state 

xt , find the most probable state St by using the 
previous tracking result y1:t-1, compute the weights 

 N

1i

t

iw  by particle filer algorithm. Adaptively update 

the observation model. 
 Set Xt-1 = Xt , Timely update the dictionary Dt and 

multi-scale max pooling Z . Plot the tracking result 
in the current image. 

end if 
end for 
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IV. EXPERIMENTS 

A. Image Set  

We evaluate the proposed tracker on the most 
challenging image sequences including dtneu_nebel, 
dtneu_schnee, dtneu_winter, rheinhafen, tas_demo1-2 ,Car4, 
Car11, etc., which are publicly available on public test 
database

[12]
. The challenging factors include heavy occlusion, 

partial occlusion, illumination change, scale change, rotation, 
background clutter, fast motion and motion blur (As shown 
in Table I). On the patch level, small image blocks share 
structural similarity. We exploit prior and online information 
from testing data sets and use it for vehicle tracking process. 
These data sets consist of a large variety of objects which are 
common in surveillance scenarios. These objects are used for 
object tracking in many comparative experiments, including 
person, face, truck, bus and car. We use object classes from 
above data sets. It should be noted that these object images 
can also be used to learn a prior for specific tracking tasks. 

TABLE I. EVALUATED IMAGE SEQUENCES 

Sequence Frames SEQUENCES 

dtneu_nebel 459 
heavy occlusion, scale changes, 
background clutter 

dtneu_schnee 398 
partial occlusion, background 
clutter 

dtneu_winter 672 
partial occlusion, background 
clutter 

rheinhafen 1546 fast motion, scale changes 

kwbB 1976 heavy occlusion, scale changes 

tas_demo1 1221 
illumination variation, scale 

changes 

tas_demo2 1674 motion blur, fast motion 

Car4 659 
illumination variation, scale 
changes 

Car11 393 
illumination variation, 
background 
clutter, scale changes 

Pet2000 265 rotation, scale changes 

test1 1544 fast motion, scale changes 

test2 1356 fast motion, background clutter 

AVSEQ01 121 fast motion, scale changes 

B. Qualitative Evaluation  

We evaluate the proposed tracker on the most 

challenging image sequences including dtneu_nebel, 

dtneu_schnee , rheinhafen , etc., which are publicly available 

on public test database[13]. With our formation in Eq. 1, the 

dimensionality of zt and E is 16 and 1024 respectively. The 

parameters of the proposed tracking algorithm are fixed in all 

experiments. For sparse coding and dictionary learning, the 

parameters λ1, λ2 and λ3 in Eq. 2 are set to be 0.1, 0.5 and 5. 

In the offline training phase, we resize the target image patch 
to 32×32 pixels and extract overlapped 16×16 local patches 

with 8 pixels as step length, the SIFT descriptors are densely 

extracted from 16×16 patches from each selected image. For 

the online classifier, parameter f in Eq.6 is initialized with 50 

positive templates and 200 background negative templates in 

the first frame. The classifier parameter w in Eq.5 is updated 

every 5 frames. As a trade-off between computational 

efficiency and effectiveness[14], 600 particles are used in 

particle filter and the proposed tracker is incrementally 

updated every 5 frames in all the experiments.  

We compare with related tracking algorithms including 

the ST[15], LRT [1], LRST [8],ℓ1 [5] and IST [16] methods. 

We present some representative results in this section. The 

proposed algorithm is implemented in MATLAB which runs 

at 4 frames per second on PC with Pentium 3.4 GHz i7 CPU 

and 32GB memory. The tracking results are shown in Fig.2, 

where the yellow, green, blue and red line box respectively 
represent the tracking result of ST, LRT, LRST and our 

tracker. As shown in Fig.2 a), the ST, LRT, LRST trackers 

and the proposed tracker perform well at frame 103. For 

sparse-based trackers, simple update without dealing with 

occluded regions often leads to drifts. When the vehicle is 

heavily occluded at frame 145, the ST tracker updates the 

trivial templates with a straightforward scheme, the tracking 

results are less accurate. The LRT tracker uses a sparse error 

matrix to handle the occlusions. The LRST tracker is less 

effective in dealing with heavy occlusion and drifts away at 

frame 249. At frame 277, the LRST tracker locates the target 

well but deals with heavy occlusion less effectively. From 

frame 103 to frame 300, all the trackers except our tracker 

fail due to heavy occlusion in the dtneu_schnee sequence. 

  
a) #103 b) #145 

 

  
c) #225 d) #249 

 

  

e) #277 f) #300 

Figure 2. Results of 4 kinds of tracker on standard data 
source dtneu_schnee 
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The successful tracking rates and average center location 

errors of all these trackers are respectively listed in Table II, 

Overall, the tracking data denote that our tracker achieves 

favorable results against other methods. 

TABLE II. AVERAGE CENTER ERRORS (IN PIXELS) AND SUCCESS 

RATE 

sequences 
LRT ST LRST 

error rate error rate error rate 

dtneu_nebel 16.6 0.48 53.2 0.22 8.5 0.68 

dtneu_schne
e 

5.2 0.80 8.7 0.58 4.1 0.82 

dtneu_winter 15.3 0.53 24.5 0.42 10.5 0.57 

rheinhafen 8.3 0.60 9.6 0.58 6.4 0.78 

kwbB 15.3 0.50 32.1 0.40 10.2 0.62 

tas_demo1 21.2 0.49 87.0 0.30 32.2 0.44 

tas_demo2 7.3 0.79 7.5 0.62 6.2 0.77 

Car4 10.3 0.62 17.5 0.52 7.4 0.80 

Car11 11.4 0.60 21.3 0.44 7.6 0.79 

Pet2000 11.9 0.58 17.9 0.47 8.2 0.77 

test1 15.1 0.50 40.2 0.22 10.4 0.70 

test2 8.1 0.69 9.0 0.58 6.4 0.70 

AVSEQ01 7.6 0.80 9.7 0.56 1.6 0.92 

sequences 
ℓ1 IST Ours 

error rate error rate error rate 

dtneu_nebel 47.6 0.34 8.2 0.70 4.3 0.76 

dtneu_schne
e 

9.2 0.54 3.1 0.87 1.8 0.90 

dtneu_winter 17.3 0.47 5.7 0.77 4.0 0.78 

rheinhafen 8.6 0.68 2.7 0.87 1.9 0.90 

kwbB 26.2 0.48 6.5 0.70 4.4 0.76 

tas_demo1 64.1 0.43 8.9 0.69 5.2 0.70 

tas_demo2 5.2 0.80 4.5 0.80 4.1 0.83 

Car4 15.6 0.50 5.0 0.84 2.7 0.86 

Car11 18.6 0.52 5.1 0.82 2.9 0.84 

Pet2000 18.3 0.45 2.6 0.85 6.3 0.75 

test1 38.5 0.38 6.5 0.73 3.5 0.81 

test2 9.1 0.57 3.2 0.82 1.5 0.92 

AVSEQ01 9.5 0.57 2.6 0.86 4.2 0.85 

V. CONCLUSION  

The contributions of this work are two-fold. Firstly, 
based on online classifier learning using low-rank sparse 
representation, we effectively combine the online classifier 
and particle filter to learn target features in the occlusion 
scene, and effectively separate the specified moving vehicles 
from urban traffic flow data. Secondly, the sparse 
representations of observations are represented jointly rather 
than independently, and learned jointly by considering all 
particles, solving one rank minimization problem by a 
sequence of closed form operations. In this paper, the 
performance of particle filter is enhanced by integrating low-
rank sparse representation, sparse coding and dictionary 
learning into conventional sequential Monte Carlo 
framework. Simultaneously, online classification are 

exploited to handle new observations in the vision tracking 
process, particle filter tracking process reflects the classifier 
learning result on low-rank sparse representation. 
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