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Abstract- CoAP is designed as an application layer protocol for 

IoT applications by IETF CoRE WG, and CoAP over 

WebSocket is currently of interest to researchers. This paper 

analyzes the features and defect of the HTTP/CoAP proxy 

proposed in RFC 7252, and explains the CoAP over 

WebSocket proxy as well as its advantage over the 

HTTP/CoAP proxy. Then a design and implementation of the 

WebSocket proxy based on Californium open-source 

framework is given. Performance tests and experiments results 

show that the WebSocket proxy has some significant 

advantages over HTTP/CoAP proxy in term of response time 

upon high concurrency requests. 
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I. INTRODUCTION 

The Internet of Things (IoT) is envisioned as a global 
network of billions of smart devices. International 
Telecommunications Union (ITU) proposed the concept of 
IoT in 2005, and IoT has been high on research agenda for 
more than ten years. It is predicted that there will be millions 
of billions of IoT nodes around us by 2020 [1]. Cloud 
computing and big data analysis become very hot topics in 
recent years, and the Cloudification of IoT is sure to bring 
IoT application to a completely new stage. However, 
application and service strategies are still to be standardized. 

Hypertext Transfer Protocol (HTTP), the protocol that 
runs on the World Wide Web, is supporting a myriad of Web 
applications. The main idea of HTTP protocol is 
Representational State Transfer (REST) architecture [2]: 
every object on the internet is viewed as a resource; every 
resource has its unique identifier; standard methods are 
defined for accessing the resources; all the methods are 
stateless. While HTTP performs well enough on the Web, it 
is too complex and computationally expensive for 
constrained environments where most IoT nodes lie. In order 
to provide RESTful operations for low-cost devices and IoT 
scenarios, IETF CoRE working group set out to design the 
Constrained Application Protocol (CoAP) [3]. Although 
CoAP protocol inherits a lot from HTTP protocol, there are 
two fundamental differences between them. First, CoAP is 
designed to naturally support duplex communication while 
HTTP is always client-initiate. Second, CoAP protocol uses 
a compact binary format and runs over UDP (or DTLS when 
security is required) which reduces package size while HTTP 
runs over TCP. 

The intention of CoAP design is to make the constrained 
network an extension of World Wide Web. In the IoT vision 
[4], all kinds of sensors and actuators will integrate into the 

current Internet, allowing users to access the resources the 
way they browse the Web. Furthermore, Web technology 
can enable physical mashups for the IoT, that is, to combine 
services of different devices that belong to different 
application domains. It calls for a proxy to work between the 
Web that runs HTTP and the constrained network that runs 
CoAP. CoRE working group keep concerned with the design 
and functionality of the proxy, and they suggest in RFC 7252 
that the proxy directly translate HTTP messages to CoAP 
messages field-by-field, and vice versa, as illustrated in Fig. 
1. Such proxy is referred to as HTTP/CoAP proxy. However, 
the use of such “translating” proxies raises potential 
limitation when preserving CoAP protocol’s features in 
HTTP. HTML5 WebSocket protocol [5] allows full-duplex 
communication between Servers and Clients, which exactly 
matches CoAP design. Therefore, in this paper we design 
and implement a CoAP over WebSocket proxy [6], which 
means using a WebSocket message to transport a CoAP 
message, overcoming defects of the “translating” proxy. 

 
Figure 1. “Translating” proxy (HTTP/CoAP proxy). 

The rest of paper is organized as follows: In section 2 the 
features of WebSocket proxy is introduced and discussed; in 
Section 3 the design and implementation of Websocket are 
demonstrated; in Section 4 the performance test and results 
are shown and discussed; and finally Section 5 concludes 
this work. 

II. COAP OVER WEBSOCKET PROXY  

A. CoAP protocol  

CoAP protocol is a network protocol orienting networks 
and nodes that are resource-constrained. Resource-
constrained nodes usually have only an 8-bit processor and a 
small ROM/RAM size, and they are battery-powered. 
Sensors are the most common examples. Resource 
constrained networks are those whose physical links suffer 
from high package loss and low throughput, such as 
6LoWPAN [7]. 

CoAP protocol and HTTP [8] protocol share the main 
idea of resource abstraction, RESTful operations, and 
extensible headers (or options in CoAP). The RESTful 
architecture requires each CoAP resource to be attached to a 
Universal Resource Identifier (URI), a set of standard 
methods are defined to operate the resources, and that all 
these methods are stateless. Most frequently used request 
methods are GET, POST, PUT, and DELETE. When the 
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server receives a request, it will reply with respond code like 
2.xx, 4.xx, 5.xx, and so on. Those codes have similar 
meaning to corresponding HTTP response codes. 

CoAP can be logically divided into two sub-layers. The 
request/response layer enables RESTful interactions in 
accordance with the HTTP specifications. The messaging 
layer below acts as a thin control layer that provides 
duplicate deletion and reliable delivery of messages based on 
a simple stop-and-wait mechanism for retransmissions. 

Tailored to the requirements of constrained environments, 
CoAP adopts a compact binary message format instead of 
the HTTP text message, and CoAP runs over UDP rather 
than TCP. What’s more, CoAP provides several features that 
goes beyond HTTP 1.1, so that it can fit the IoT scenarios 
better. Examples are the resource observation [9], blockwise 
transfer of messages, group communications, alternative 
transports, and so on. The resource observation means the 
client can subscribe to a resource by building an observe 
relationship with the server, and then receive stage-change 
notifications pushed by the server. Blockwise transfer allows 
messages to be fragmented when it exceeds the maximum 
transmission unit (MTU) of the physical environment. Group 
communications and other features are not the main concern 
of this paper and will not be covered here. 

Above discussions lead to the insight that although many 
fields of CoAP and HTTP can be directly mapped to each 
other, the fundamental difference between them can not be 
neglected: CoAP naturally supports two-way communication 
between the client and the server, while HTTP can only be 
initiated by the client and the server responds passively. This 
raises one obvious limitation that “translating” proxy may 
not preserve some CoAP features when translating a CoAP 
message into a HTTP message. A typical scenario is CoAP 
resource observing that the CoAP server is enabled to push 
the real-time state changes to all registered clients. In the 
case of HTTP/CoAP proxy, however, when the CoAP server 
finishes pushing notifications to the H/C proxy, the H/C 
proxy will have trouble delivering it to the registered client 
since it communicates with the client using HTTP but HTTP 
server does not have the ability to initiate a session. A 
remedy is to keep the HTTP client polling [10, 11] the server 
whether there is a notification, but polling will incur much 
extra network traffic as Fig. 2 shows. In the following 
section we will prove that CoAP over WebSocket proxy can 
solve this problem. 

 
Figure 2. Resource observing (with a “translating” proxy). 

B. HTML5 WebSocket introduction and CoAP over 

WebSocket proxy  

In the stateless HTTP protocol, the server is unable to 
identify the client, neither can it take the initiative to send a 
message to the client. Consequently, the WebSocket [12] 
API was put forward in HTML5, aiming to make 
bidirectional communications in application layer possible. 
Since the limitation of client-initiate session is eliminated, 
high real-time communication also becomes available. 
WebSocket technology is now widely used in instant 
messaging, bullet-screen video, multiplayer online games, 
smart home and various other fields. Bidirectional 
communication and real-time communication are the key 
features of IoT, because the IoT services particularly need to 
keep the data updated dynamically, and the resource 
observations is also intended to get the subscribed clients 
informed whenever the resource is updated. HTML5 
WebSocket is readily available on both the client side and 
the server side. Popular web browsers such as Chrome, 
Firefox, Opera all support HTML5 WebSocket protocol. On 
the server side, popular platforms like JavaEE, Node.JS and 
PHP also support it. In addition, WebSocket runs over the 
TCP protocol, so it can provide reliability while incurring 
only a very small overhead. 

Given above factors, the CoAP over WebSocket proxy is 
implemented in this paper. As a result, the overhead of 
mutual translation between two protocols is avoided, and the 
CoAP features are well preserved. Fig. 3 Illustrates general 
process of a WebSocket Client accessing a CoAP server 
through a WebSocket proxy: Between the browser and proxy, 
it employs the WebSocket protocol to carry CoAP messages; 
and between the proxy and the server, it is exact CoAP 
protocol. Such designation calls for CoAP knowledge of the 
client (the browser). While CoAP has not been supported by 
most web browser, this paper develops a browser extension 
to address the problem. 

III. COMPONENTS AND FUNCTIONALITIES  

There have been more than 30 kinds of implementations 
of CoAP, developed in various programming languages. Yet 
research and implementations on CoAP proxy are still to be 
enhanced. This paper presents an implementation of CoAP 
over WebSocket proxy based on Californium [13], an open-
source CoAP framework published on Eclipse. A 
reimplementation of Copper [14], a Firefox add-on, is also 
achieved. Copper aims to provide easy-to-use browsing 
experience of CoAP resources, and our work makes it 
possible to access CoAP resources with a WebSocket proxy, 
as illustrated in Fig. 3. 

 
Figure 3. CoAP Over WebSocket proxy. 

A. Client: the Browser  

Our CoAP over WebSocket proxy is designed to 
communicate between Web browser and the proxy using 
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WebSocket protocol, and the WebSocket message message 
carries a payload of CoAP message. Thus the browser should 
be equipped with the abilities of both WebSocket 
communication and CoAP message construction. Copper has 
already implemented the CoAP protocol and is widely used 
by developers to test their CoAP applications’ functionality. 
This paper re-implemented Copper, adding support for 
WebSocket communication and WebSocket URI. 

The browser interface is shown in Fig. 4. In the address 
bar, the user types in a WebSocket URI like 
“ws://127.0.0.1:8887” and requests to establish a WebSocket 
connection with the proxy. When the connection is 
established, the client configures URI of the desired CoAP 
resource. Then it is ok to perform the Ping, Discover, GET, 
Observe and other operations. According to the operation, 
the browser constructs a corresponding CoAP message and 
sends it as the WebSocket payload to the proxy. The proxy is 
obliged to pick out the CoAP payload and transfer it to the 
CoAP server, and later transfer the CoAP response in return. 

B. WebSocket Proxy  

1) Resource Discovery 
A node in a resource-constrained network can hold 

assortment of resources, and it may add or remove a resource 
at any time. CoAP allows the user to browse and retrieve 
resources available. It is called Resource Discovery [15]. The 
RFC 7252 declares that available resources on a CoAP 
server will be returned when the client sends requests for the 
well-known address “coap://[host:port]/.well-known/core”. 
This is quite similar to the website navigation function in 
many Web browsers. 

As to the implementation, when the proxy receives a 
WebSocket message from the browser, it acts as a 
WebSocket server, picking out the binary CoAP payload 
from the received message, reading out the URI of the 
requested CoAP resource, and sending the CoAP request to 
the CoAP server. The CoAP server receives the resource 
discovering request and generates a response message 
containing the information of all resources it holds, then 
responds to the proxy. The proxy finally delivers the 
response to the web browser. As a result, the user will see a 
resource directory as shown in the left-side area of Fig. 4. 

 
Figure 4. Accessing CoAP resources from the Web browser. 

2) Common Requests/Responses  
For a common request from the Web browser, for 

example, to GET a certain resource, the WebSocket proxy 
will directly transfer the CoAP server’s response. The CoAP 
server’s response to a confirmable request can either be sent 
piggy-backed with the ACK or in a separate confirmable 
response. In the former case, the ACK message piggy-backs 
the resource content; and in the latter case, the resource is not 
ready at present, and the CoAP server responds with an 
empty ACK as acknowledgement of the request. When the 
resource is ready, the server will send it to the client. 

3) Resources Observation  
As IoT has a high demand for real-time data, resource 

observation on the client side and resource publishing and 
updating on the server side are particularly important. CoAP 
protocol provides resources observation mechanism to allow 
users to subscribe to specific resources and receive CoAP 
notification messages upon a state change of the resource. In 
this paper, HTML5 WebSocket technology and the java-
websocket open-source library [16] are used to implement 
the CoAP over WebSocket proxy. The java-websocket open-
source library implements the full set of WebSocket protocol 
interfaces, and it supports sending both text messages and 
binary data. Developers can write their own processing logic 
according to actual needs when the messages are received. 

As illustrated in Fig. 5, the WebSocket client (the 
browser) sends a resource observation request to the proxy 
and the proxy forwards the request to the specified CoAP 
Server. When the CoAP Server receives that request 
containing an Observe option, it will send notification 
messages to proxy once the observed resource is updated and 
the proxy then forwards notification messages to the 
WebSocket client. 

 

Figure 5. Resource observation (with the WebSocket proxy). 

4) Blockwise Transfer 
Typically, the amount of data CoAP a message is very 

small, just dozens of bytes, but sometimes data packets of 
bigger size need to be transmitted, such as when a client 
node taking a POST or PUT operation to upload the data. 
Therefore, CoAP designed the blockwise transfer mechanism 
[17]. Before a CoAP message is sent, the message sub-layer 
detects the packet length. If it exceeds a threshold value, the 
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message will be fragmented into several blocks and sent 
block by block. Each block of message has a “Block” option. 

The process of a typical blockwise scenario is shown in 
Fig. 6: The CoAP response message to a GET request is 
divided into three blocks for separate transmission. The 
proxy sends the GET request to the CoAP Server, and 
receives a response containing the Block option. This is the 
first block, length 128 Bytes, and followed by other blocks. 
The proxy then sends another GET request and expects to 
receive another response, until the last block is received. 

 
Figure 6. Blockwise transfer. 

C. CoAP Server and the Resorce 

In this paper, the CoAP server is deployed on a PC 
running Californium framework, and different kinds of 
resources in accordance with CoAP’s featured functionalities 
are provided to clients. 

IV. EVALUATION 

We test the WebSocket proxy and the HTTP/CoAP under 
the same condition. Both proxies run on PC with 8GB RAM 
and 1.6GHz, in a less constrained network. The network is 
set to be IEEE 802.11g Wi-Fi. 

For the sake of higher accuracy, CoAP Server and the 
proxies are placed in the same network. In this way, the test 
result will be least affected by the network delay. 

A. Testing the Responding Time 

We test the responding time in three different cases: 
using no proxy, using a HTTP/CoAP proxy, and using a 
WebSocket proxy. The test program starts when the client 
sends a request, and ends when the client receives the 
response. We repeat the same test program for ten times and 
calculate the average value as the test result, as Table 1 
shows. 

TABLE I.  RESPONDING TIME OF DIFFERENT CASES 

The case Responding time 

(millisecond) 

Use no proxy 6.020 

Use H/C proxy 10.020 

Use WS proxy 7.062 

From the table we see that there is no significant 
difference between the case of using no proxy and the case 
of using WebSocket proxy, while using WebSocket proxy 
takes much less time than using HTTP/CoAP proxy. 

B. Stress and Performance Test 

In this part, we test and compare the performance of both 
proxies at different concurrency levels. For each concurrency 
level, the test program creats the specified number of virtual 
clients, and each client keeps sending as many CoAP 
requests as possible in a certain amount of time, say 60 
seconds. Every time the request is sent, the virtual client 
waits to receive the response before sending the next request. 
To avoid the case that the client fails to receive a response 
thus waits for too long before sending another request, a 
timeout can be set for the waiting period. When the test is 
finished, we count the total number of successful requests 
and divide it by the test time to get the throughput (request 
per second) of the proxy, as shown in Table 2. 

TABLE II.  THROUGHPUT COMPARISON OF TWO PROXIES 

Concurrency level 

/ throughput 

10 20 30 50 100 

H/C proxy 998 1686 2676 4915 10946 

WS proxy 1416 2972 3729 7220 13840 

 (continued) 
Concurrency level / 

throughput 

200 300 500 600 

H/C proxy 18579 28065 53579 55901 

WS proxy 25980 34650 66950 67800 

 (contiued) 
Concurrency level / 

throughput 

700 800 900 1000 

H/C proxy 66079 79132 83047 112150 

WS proxy 89670 107380 107380 140304 

On the line chart, Fig. 7, the performance differences 
between HTTP/CoAP proxy and CoAP over WebSocket 
proxy is depicted more vividly. The result suggests that 
CoAP over WebSocket proxy can serve no less than 1,000 
concurrent users steadily. 

V. CONCLUSION 

Starting from the background of IoT applications and 
services, this paper aims to solve the problem of accessing 
CoAP resources held on constrained nodes from the Web 
browser. We focus on how to design an intermediate proxy 
that not only meets the need of the client but also preserves 
the features of CoAP to the most. Firstly, we analyze the 
reason why using the standard HTTP/CoAP proxy 
recommended by IETF CoRE working group is not the best 
solution. Two most important reasons are the overhead 
caused by "translation" between two protocols, and the loss 
of some additional features of CoAP protocol that are not 
supported by HTTP. Considering above reasons, we 
designed and implemented CoAP over WebSocket proxy on 
basis of Californium open-source framework. Finally, we 
conduct performance tests for the two kinds of proxies and 
compare the results. It turns out that the WebSocket proxy is 
advantageous to the HTTP/CoAP proxy in term of respond 
speed and the ability to deal with high concurrency requests. 
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In this paper, the CoAP Server is deployed in the Wi-Fi 
network environment. Wi-Fi is counted as a less constrained 
network, and it is not quite like the real constrained 
environment such as Wireless Sensor Networks (WSN). To 
obtain more exact test data, similar experiments need to be 
run in real constrained environments. 
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Figure 7. Stress performance test result. 
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