
The Design and Implementation of CoAP Over WebSocket Proxy

Zhong-Yan Yuan, Geng-Yu Wei

School of Computer and Science, BUPT, Beijing, China

E-mail: yuanzhongyan@bupt.edu.cn, weigengyu@bupt.edu.cn

Abstract- CoAP is designed as an application layer protocol for

IoT applications by IETF CoRE WG, and CoAP over

WebSocket is currently of interest to researchers. This paper

analyzes the features and defect of the HTTP/CoAP proxy

proposed in RFC 7252, and explains the CoAP over

WebSocket proxy as well as its advantage over the

HTTP/CoAP proxy. Then a design and implementation of the

WebSocket proxy based on Californium open-source

framework is given. Performance tests and experiments results

show that the WebSocket proxy has some significant

advantages over HTTP/CoAP proxy in term of response time

upon high concurrency requests.

Keywords-internet of things; CoAP; restful; network proxy;

WebSocket

I. INTRODUCTION

The Internet of Things (IoT) is envisioned as a global
network of billions of smart devices. International
Telecommunications Union (ITU) proposed the concept of
IoT in 2005, and IoT has been high on research agenda for
more than ten years. It is predicted that there will be millions
of billions of IoT nodes around us by 2020 [1]. Cloud
computing and big data analysis become very hot topics in
recent years, and the Cloudification of IoT is sure to bring
IoT application to a completely new stage. However,
application and service strategies are still to be standardized.

Hypertext Transfer Protocol (HTTP), the protocol that
runs on the World Wide Web, is supporting a myriad of Web
applications. The main idea of HTTP protocol is
Representational State Transfer (REST) architecture [2]:
every object on the internet is viewed as a resource; every
resource has its unique identifier; standard methods are
defined for accessing the resources; all the methods are
stateless. While HTTP performs well enough on the Web, it
is too complex and computationally expensive for
constrained environments where most IoT nodes lie. In order
to provide RESTful operations for low-cost devices and IoT
scenarios, IETF CoRE working group set out to design the
Constrained Application Protocol (CoAP) [3]. Although
CoAP protocol inherits a lot from HTTP protocol, there are
two fundamental differences between them. First, CoAP is
designed to naturally support duplex communication while
HTTP is always client-initiate. Second, CoAP protocol uses
a compact binary format and runs over UDP (or DTLS when
security is required) which reduces package size while HTTP
runs over TCP.

The intention of CoAP design is to make the constrained
network an extension of World Wide Web. In the IoT vision
[4], all kinds of sensors and actuators will integrate into the

current Internet, allowing users to access the resources the
way they browse the Web. Furthermore, Web technology
can enable physical mashups for the IoT, that is, to combine
services of different devices that belong to different
application domains. It calls for a proxy to work between the
Web that runs HTTP and the constrained network that runs
CoAP. CoRE working group keep concerned with the design
and functionality of the proxy, and they suggest in RFC 7252
that the proxy directly translate HTTP messages to CoAP
messages field-by-field, and vice versa, as illustrated in Fig.
1. Such proxy is referred to as HTTP/CoAP proxy. However,
the use of such “translating” proxies raises potential
limitation when preserving CoAP protocol’s features in
HTTP. HTML5 WebSocket protocol [5] allows full-duplex
communication between Servers and Clients, which exactly
matches CoAP design. Therefore, in this paper we design
and implement a CoAP over WebSocket proxy [6], which
means using a WebSocket message to transport a CoAP
message, overcoming defects of the “translating” proxy.

Figure 1. “Translating” proxy (HTTP/CoAP proxy).

The rest of paper is organized as follows: In section 2 the
features of WebSocket proxy is introduced and discussed; in
Section 3 the design and implementation of Websocket are
demonstrated; in Section 4 the performance test and results
are shown and discussed; and finally Section 5 concludes
this work.

II. COAP OVER WEBSOCKET PROXY

A. CoAP protocol

CoAP protocol is a network protocol orienting networks
and nodes that are resource-constrained. Resource-
constrained nodes usually have only an 8-bit processor and a
small ROM/RAM size, and they are battery-powered.
Sensors are the most common examples. Resource
constrained networks are those whose physical links suffer
from high package loss and low throughput, such as
6LoWPAN [7].

CoAP protocol and HTTP [8] protocol share the main
idea of resource abstraction, RESTful operations, and
extensible headers (or options in CoAP). The RESTful
architecture requires each CoAP resource to be attached to a
Universal Resource Identifier (URI), a set of standard
methods are defined to operate the resources, and that all
these methods are stateless. Most frequently used request
methods are GET, POST, PUT, and DELETE. When the

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

253

mailto:yuanzhongyan@bupt.edu.cn
mailto:weigengyu@bupt.edu.cn

server receives a request, it will reply with respond code like
2.xx, 4.xx, 5.xx, and so on. Those codes have similar
meaning to corresponding HTTP response codes.

CoAP can be logically divided into two sub-layers. The
request/response layer enables RESTful interactions in
accordance with the HTTP specifications. The messaging
layer below acts as a thin control layer that provides
duplicate deletion and reliable delivery of messages based on
a simple stop-and-wait mechanism for retransmissions.

Tailored to the requirements of constrained environments,
CoAP adopts a compact binary message format instead of
the HTTP text message, and CoAP runs over UDP rather
than TCP. What’s more, CoAP provides several features that
goes beyond HTTP 1.1, so that it can fit the IoT scenarios
better. Examples are the resource observation [9], blockwise
transfer of messages, group communications, alternative
transports, and so on. The resource observation means the
client can subscribe to a resource by building an observe
relationship with the server, and then receive stage-change
notifications pushed by the server. Blockwise transfer allows
messages to be fragmented when it exceeds the maximum
transmission unit (MTU) of the physical environment. Group
communications and other features are not the main concern
of this paper and will not be covered here.

Above discussions lead to the insight that although many
fields of CoAP and HTTP can be directly mapped to each
other, the fundamental difference between them can not be
neglected: CoAP naturally supports two-way communication
between the client and the server, while HTTP can only be
initiated by the client and the server responds passively. This
raises one obvious limitation that “translating” proxy may
not preserve some CoAP features when translating a CoAP
message into a HTTP message. A typical scenario is CoAP
resource observing that the CoAP server is enabled to push
the real-time state changes to all registered clients. In the
case of HTTP/CoAP proxy, however, when the CoAP server
finishes pushing notifications to the H/C proxy, the H/C
proxy will have trouble delivering it to the registered client
since it communicates with the client using HTTP but HTTP
server does not have the ability to initiate a session. A
remedy is to keep the HTTP client polling [10, 11] the server
whether there is a notification, but polling will incur much
extra network traffic as Fig. 2 shows. In the following
section we will prove that CoAP over WebSocket proxy can
solve this problem.

Figure 2. Resource observing (with a “translating” proxy).

B. HTML5 WebSocket introduction and CoAP over

WebSocket proxy

In the stateless HTTP protocol, the server is unable to
identify the client, neither can it take the initiative to send a
message to the client. Consequently, the WebSocket [12]
API was put forward in HTML5, aiming to make
bidirectional communications in application layer possible.
Since the limitation of client-initiate session is eliminated,
high real-time communication also becomes available.
WebSocket technology is now widely used in instant
messaging, bullet-screen video, multiplayer online games,
smart home and various other fields. Bidirectional
communication and real-time communication are the key
features of IoT, because the IoT services particularly need to
keep the data updated dynamically, and the resource
observations is also intended to get the subscribed clients
informed whenever the resource is updated. HTML5
WebSocket is readily available on both the client side and
the server side. Popular web browsers such as Chrome,
Firefox, Opera all support HTML5 WebSocket protocol. On
the server side, popular platforms like JavaEE, Node.JS and
PHP also support it. In addition, WebSocket runs over the
TCP protocol, so it can provide reliability while incurring
only a very small overhead.

Given above factors, the CoAP over WebSocket proxy is
implemented in this paper. As a result, the overhead of
mutual translation between two protocols is avoided, and the
CoAP features are well preserved. Fig. 3 Illustrates general
process of a WebSocket Client accessing a CoAP server
through a WebSocket proxy: Between the browser and proxy,
it employs the WebSocket protocol to carry CoAP messages;
and between the proxy and the server, it is exact CoAP
protocol. Such designation calls for CoAP knowledge of the
client (the browser). While CoAP has not been supported by
most web browser, this paper develops a browser extension
to address the problem.

III. COMPONENTS AND FUNCTIONALITIES

There have been more than 30 kinds of implementations
of CoAP, developed in various programming languages. Yet
research and implementations on CoAP proxy are still to be
enhanced. This paper presents an implementation of CoAP
over WebSocket proxy based on Californium [13], an open-
source CoAP framework published on Eclipse. A
reimplementation of Copper [14], a Firefox add-on, is also
achieved. Copper aims to provide easy-to-use browsing
experience of CoAP resources, and our work makes it
possible to access CoAP resources with a WebSocket proxy,
as illustrated in Fig. 3.

Figure 3. CoAP Over WebSocket proxy.

A. Client: the Browser

Our CoAP over WebSocket proxy is designed to
communicate between Web browser and the proxy using

Advances in Computer Science Research, volume 44

254

WebSocket protocol, and the WebSocket message message
carries a payload of CoAP message. Thus the browser should
be equipped with the abilities of both WebSocket
communication and CoAP message construction. Copper has
already implemented the CoAP protocol and is widely used
by developers to test their CoAP applications’ functionality.
This paper re-implemented Copper, adding support for
WebSocket communication and WebSocket URI.

The browser interface is shown in Fig. 4. In the address
bar, the user types in a WebSocket URI like
“ws://127.0.0.1:8887” and requests to establish a WebSocket
connection with the proxy. When the connection is
established, the client configures URI of the desired CoAP
resource. Then it is ok to perform the Ping, Discover, GET,
Observe and other operations. According to the operation,
the browser constructs a corresponding CoAP message and
sends it as the WebSocket payload to the proxy. The proxy is
obliged to pick out the CoAP payload and transfer it to the
CoAP server, and later transfer the CoAP response in return.

B. WebSocket Proxy

1) Resource Discovery
A node in a resource-constrained network can hold

assortment of resources, and it may add or remove a resource
at any time. CoAP allows the user to browse and retrieve
resources available. It is called Resource Discovery [15]. The
RFC 7252 declares that available resources on a CoAP
server will be returned when the client sends requests for the
well-known address “coap://[host:port]/.well-known/core”.
This is quite similar to the website navigation function in
many Web browsers.

As to the implementation, when the proxy receives a
WebSocket message from the browser, it acts as a
WebSocket server, picking out the binary CoAP payload
from the received message, reading out the URI of the
requested CoAP resource, and sending the CoAP request to
the CoAP server. The CoAP server receives the resource
discovering request and generates a response message
containing the information of all resources it holds, then
responds to the proxy. The proxy finally delivers the
response to the web browser. As a result, the user will see a
resource directory as shown in the left-side area of Fig. 4.

Figure 4. Accessing CoAP resources from the Web browser.

2) Common Requests/Responses
For a common request from the Web browser, for

example, to GET a certain resource, the WebSocket proxy
will directly transfer the CoAP server’s response. The CoAP
server’s response to a confirmable request can either be sent
piggy-backed with the ACK or in a separate confirmable
response. In the former case, the ACK message piggy-backs
the resource content; and in the latter case, the resource is not
ready at present, and the CoAP server responds with an
empty ACK as acknowledgement of the request. When the
resource is ready, the server will send it to the client.

3) Resources Observation
As IoT has a high demand for real-time data, resource

observation on the client side and resource publishing and
updating on the server side are particularly important. CoAP
protocol provides resources observation mechanism to allow
users to subscribe to specific resources and receive CoAP
notification messages upon a state change of the resource. In
this paper, HTML5 WebSocket technology and the java-
websocket open-source library [16] are used to implement
the CoAP over WebSocket proxy. The java-websocket open-
source library implements the full set of WebSocket protocol
interfaces, and it supports sending both text messages and
binary data. Developers can write their own processing logic
according to actual needs when the messages are received.

As illustrated in Fig. 5, the WebSocket client (the
browser) sends a resource observation request to the proxy
and the proxy forwards the request to the specified CoAP
Server. When the CoAP Server receives that request
containing an Observe option, it will send notification
messages to proxy once the observed resource is updated and
the proxy then forwards notification messages to the
WebSocket client.

Figure 5. Resource observation (with the WebSocket proxy).

4) Blockwise Transfer
Typically, the amount of data CoAP a message is very

small, just dozens of bytes, but sometimes data packets of
bigger size need to be transmitted, such as when a client
node taking a POST or PUT operation to upload the data.
Therefore, CoAP designed the blockwise transfer mechanism
[17]. Before a CoAP message is sent, the message sub-layer
detects the packet length. If it exceeds a threshold value, the

Advances in Computer Science Research, volume 44

255

message will be fragmented into several blocks and sent
block by block. Each block of message has a “Block” option.

The process of a typical blockwise scenario is shown in
Fig. 6: The CoAP response message to a GET request is
divided into three blocks for separate transmission. The
proxy sends the GET request to the CoAP Server, and
receives a response containing the Block option. This is the
first block, length 128 Bytes, and followed by other blocks.
The proxy then sends another GET request and expects to
receive another response, until the last block is received.

Figure 6. Blockwise transfer.

C. CoAP Server and the Resorce

In this paper, the CoAP server is deployed on a PC
running Californium framework, and different kinds of
resources in accordance with CoAP’s featured functionalities
are provided to clients.

IV. EVALUATION

We test the WebSocket proxy and the HTTP/CoAP under
the same condition. Both proxies run on PC with 8GB RAM
and 1.6GHz, in a less constrained network. The network is
set to be IEEE 802.11g Wi-Fi.

For the sake of higher accuracy, CoAP Server and the
proxies are placed in the same network. In this way, the test
result will be least affected by the network delay.

A. Testing the Responding Time

We test the responding time in three different cases:
using no proxy, using a HTTP/CoAP proxy, and using a
WebSocket proxy. The test program starts when the client
sends a request, and ends when the client receives the
response. We repeat the same test program for ten times and
calculate the average value as the test result, as Table 1
shows.

TABLE I. RESPONDING TIME OF DIFFERENT CASES

The case Responding time

(millisecond)

Use no proxy 6.020

Use H/C proxy 10.020

Use WS proxy 7.062

From the table we see that there is no significant
difference between the case of using no proxy and the case
of using WebSocket proxy, while using WebSocket proxy
takes much less time than using HTTP/CoAP proxy.

B. Stress and Performance Test

In this part, we test and compare the performance of both
proxies at different concurrency levels. For each concurrency
level, the test program creats the specified number of virtual
clients, and each client keeps sending as many CoAP
requests as possible in a certain amount of time, say 60
seconds. Every time the request is sent, the virtual client
waits to receive the response before sending the next request.
To avoid the case that the client fails to receive a response
thus waits for too long before sending another request, a
timeout can be set for the waiting period. When the test is
finished, we count the total number of successful requests
and divide it by the test time to get the throughput (request
per second) of the proxy, as shown in Table 2.

TABLE II. THROUGHPUT COMPARISON OF TWO PROXIES

Concurrency level

/ throughput

10 20 30 50 100

H/C proxy 998 1686 2676 4915 10946

WS proxy 1416 2972 3729 7220 13840

 (continued)
Concurrency level /

throughput

200 300 500 600

H/C proxy 18579 28065 53579 55901

WS proxy 25980 34650 66950 67800

 (contiued)
Concurrency level /

throughput

700 800 900 1000

H/C proxy 66079 79132 83047 112150

WS proxy 89670 107380 107380 140304

On the line chart, Fig. 7, the performance differences
between HTTP/CoAP proxy and CoAP over WebSocket
proxy is depicted more vividly. The result suggests that
CoAP over WebSocket proxy can serve no less than 1,000
concurrent users steadily.

V. CONCLUSION

Starting from the background of IoT applications and
services, this paper aims to solve the problem of accessing
CoAP resources held on constrained nodes from the Web
browser. We focus on how to design an intermediate proxy
that not only meets the need of the client but also preserves
the features of CoAP to the most. Firstly, we analyze the
reason why using the standard HTTP/CoAP proxy
recommended by IETF CoRE working group is not the best
solution. Two most important reasons are the overhead
caused by "translation" between two protocols, and the loss
of some additional features of CoAP protocol that are not
supported by HTTP. Considering above reasons, we
designed and implemented CoAP over WebSocket proxy on
basis of Californium open-source framework. Finally, we
conduct performance tests for the two kinds of proxies and
compare the results. It turns out that the WebSocket proxy is
advantageous to the HTTP/CoAP proxy in term of respond
speed and the ability to deal with high concurrency requests.

Advances in Computer Science Research, volume 44

256

In this paper, the CoAP Server is deployed in the Wi-Fi
network environment. Wi-Fi is counted as a less constrained
network, and it is not quite like the real constrained
environment such as Wireless Sensor Networks (WSN). To
obtain more exact test data, similar experiments need to be
run in real constrained environments.

0

20000

40000

60000

80000

100000

120000

140000

160000

10 20 30 50 100 200 300 500 600 700 800 900 1000

re
qu
e
st
p
er

se
co
n
d

Concurrency level

H/C<Proxy

WS<Proxy

Figure 7. Stress performance test result.

REFERENCES

[1] Sundmaeker H, Guillemin P, Friess P. Vision and challenges for

realizing the Internet of Things. Cluster of European Research
Projects on the Internet of Things, European Commission, 2010.

[2] Fielding R T. Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[3] Shelby Z, Hartke K, Bormann C. The constrained application
protocol (CoAP). RFC 7252. 2014

[4] Sun Qi-bo, Liu Jie, Li Shan. Internet of Things: Summarize on

Concepts, Architecture and Key Technology problem. Journal of

Beijing University of Posts and Telecommunications, 2010, 33(3), pp.
1-9.

[5] Fette I, Melnikov A. The websocket protocol. RFC 6455, 2011.

[6] Giang N K, Ha M, Kim D. SCoAP: An integration of CoAP protocol

with web-based application. 2013 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2013, pp. 2648-2653.

[7] Shelby Z, Bormann C. 6LoWPAN: The wireless embedded Internet.
John Wiley & Sons, 2011.

[8] Fielding R, Gettys J, Mogul J. Hypertext transfer protocol--HTTP/1.1.
RFC 2616. 1999.

[9] Hartke K. Observing resources in the Constrained Application
Protocol (CoAP). RFC 7641. 2015.

[10] Garrett J J. Ajax: A new approach to web applications. 2005.

[11] Loreto S, Saint-Andre P, Salsano S, et al. RFC 6202-Known issues

and best practices for the use of long polling and streaming in
bidirectional HTTP. 2011.

[12] Wang V, Salim F, Moskovits P. The definitive guide to HTML5
WebSocket. Berkeley, Calif, USA: Apress, 2013.

[13] Kovatsch M, Lanter M, Shelby Z. Californium: Scalable cloud

services for the internet of things with coap[C]//Internet of Things
(IOT), 2014 International Conference on the. IEEE, 2014, pp. 1-6.

[14] Kovatsch M. Demo abstract: human-CoAP interaction with copper.

Distributed Computing in Sensor Systems and Workshops (DCOSS),
2011 International Conference on. IEEE, 2011, pp. 1-2.

[15] Krco S, Shelby Z, Bormann D C. Core resource directory. March.

2016. Digital Object Identifiers (DOIs):
https://tools.ietf.org/html/draft-ietf-core-resource-directory-07

[16] Nathan R. Java WebSockets. August. 2015. Digital Object Identifiers
(DOIs): https://github.com/TooTallNate/Java-WebSocket

[17] Shelby Z, Bormann C. Block-wise transfers in CoAP. 2016.

Advances in Computer Science Research, volume 44

257

