
Garbage Collection of Virtual Object in IoT

Ze-Yi Zhao, Dong Wang

School of Software and Engineering, Shanghai Jiao Tong University, Shanghai, China

E-mail: zeyi.zhao@gmail.com, wangdong@cs.sjtu.edu.cn

Abstract-Since the Internet of Things has become more and

more popular, the number of devices in IoT increase at a rapid

clip. Some Researches introduced virtual object to enrich the

management of the devices. Therefore, virtual object life cycles

will need to be thoroughly managed, so that when their usage

changes or they are not needed anymore, the virtual objects

should be updated and deleted correspondingly. However,

there is no specific way in IoT to execute garbage collection of

virtual objects. This paper proposes a garbage collection

method for virtual objects that uses the concept smart device to

manage the virtual objects’ life cycles and solve the circular

references problem when using the smart device.

Keywords-virtual object; garbage collection; smart device;

circular references

I. INTRODUCTION

In IoT apps, current interaction model has shifted from
based on humans looking for information provided by
objects (human-object interaction) to the object-object
interaction. The object-object interaction is based on objects
looking for others to provide composite services, which
increases the interaction complexity. To cope with this
challenge, the physical devices’ capabilities need to be
augmented and devices should be able to talk to each other at
the same level to make the realization of robust applications
easier. The virtualization of objects is the perfect answer to
this problem.

Major IoT platforms have introduced their own vision of
the virtual objects. The role of the virtual objects is to bridge
the gap between the physical and the virtual worlds. To
achieve this goal, the virtual object is intended to support:
 Fast deployment of new services related to the

physical world;
 Co-existence of heterogeneous objects over a

common infrastructure;
 All-time reachability of real objects;
 Self-management of network objects through context

awareness
Virtual objects need to be described semantically in order

to expedite the discovery of services they provide and to
make heterogeneous objects interoperable at the virtual layer.
Based on the characteristics and functionalities, virtual object
can be defined as followed: a virtual object is a digital
representation of a real world object, which is able to acquire
and analyze the information about its context, and to
augment the service experience of the associated devices.

More and more researches on device virtualization have
been carried out, and some problems are gradually exposed
with the introduction of device virtualization.

Interoperability is one of the major problems, although there
are some virtualization-based IoT solutions that have similar
functionalities, there are neither standard formats nor
recommendations to regulate the virtual objects’ usage. This
leads to the situation that virtual objects belonging to
different architectures can only communicate with each other
in some cases, which makes the cooperation between these
virtual objects more and more difficult.

On the other hand, with the upsurge of the objects in the
IoT, the scalability issue should also be concerned. Virtual
object life cycles need to be thoroughly managed, when
some objects’ usage changes or they are no longer needed,
they should be updated and deleted correspondingly.
Especially when some virtual object is shared among
multiple IoT apps and this virtual object is going to be
deleted, the robust of the app should also be considered,
crash will not be allowed because of one virtual object’s
deletion.

This paper is mainly about a new garbage collection
method targeting virtual objects. Firstly, the method for the
management of virtual objects life cycle is proposed.
Secondly, based on reference counting method used in java
garbage collection system, we propose a new garbage
collection method, to solve the circular references problem in
reference counting, we introduce a concept smart device,
which is a semantical enrichment of the original virtual
object.

The rest of this paper is organized as follow: section 2
presents related works. Section 3 describe the details the
garbage collection method. Implementation is given in
section 4 and discussion of the results and concluding
remarks end this paper in section 5 and section 6.

II. RELATED WORK

Current researches about the management of virtual
objects includes the implementation, management and the
application. [6]presents the evolution of its definitions,
current functionalities assigned to the virtual object and how
they tackle the main IoT challenges, and major IoT platforms.
The first attempts towards the virtualization of real world
objects were connected with Radio Frequency Identifiers
(RFID) [7] which could only capture raw data. Next steps
were done in the contextualization of captured data [8]. And
then, the emergence of virtual objects bridge the gap between
physical word and virtual world.

FI-WARE [9] is based upon Generic Enablers (GEs),
which offers reusable and commonly shared functions,
serving a multiplicity of usage areas across various sectors.
In FI-WARE, sensors are modelled as virtual objects that

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

276

have an ID, a type and several attributes, so that every object
is associated to one single virtual object. SENSI [10] enables
the integration of heterogeneous and distributed Sensor and
Actuator Network (SAN) islands into a homogenous
framework for real world information and interactions. It
provides an abstraction level of resources corresponding to
the real world consisting of Real World Entities. SENSI
providing a many-to-one association between real and virtual
objects. IoT-A [11] extends the models introduced in
SENSEI and proposes an architectural reference model for
the IoT. IoT-A introduces entity, which is the core of the
project. Entities are associated with resources, which can be
accessed through the interfaces provided for users. One
physical object is corresponding to many virtual entities.
iCore [12] is organized in three levels: the Virtual
Object(VO) level, VO is the virtual representation of real
world objects that are dynamically created and destroyed. In
the upper layer, the Composite Virtual Object (CVO) level,
CVO is a mashup of several VOs defined by some specific
functionality or service request. The last layer is the Service
layer, it translates the apps’ requirement into the service that
CVO need.

[1][3] adds cognitive management to iCore [12], in VO
level, there is a constant link between physical devices and
virtual objects, through which the device may complete its
self-management and self-configuration. Cognitive
management makes virtual objects more intelligent.

Currently, the garbage collection towards virtual objects
is not proposed. This paper will introduce a garbage
collection method towards virtual objects based on java
garbage collection methods. [5] presents some garbage
collection methods used in java virtual machine. Normal
methods includes reference counting, mark-sweep, copying,
mark-compact and generational collecting. The garbage
collection method we proposed is based on the reference
counting method. The main idea of reference counting is to
use reference counter, for an object A, if another object
references A, the reference counter of A increases, when the
reference become invalid, the reference counter decreases,
when the counter reaches 0, then A will not be used any
more.

III. GARBAGE COLLECTION METHOD OVERVIEW

A. Virtual Object Life Cycle Management

Virtual objects bring convenience to IoT. In the
meantime, the management of virtual objects should also be
concerned. The whole process from the construction to the
destruction of the virtual objects should be managed, there is
some constant link between physical device and virtual
objects, which is maintained by the heartbeat server. The
heartbeat server pings the virtual object once in a while to
ensure its connectivity. Though this link, we can implement
the management of physical devices by virtual objects.

This paper is about the extension of cognitive
management system. In normal cognitive management
system, VO and CVO makes the many-to-many map
between physical devices and virtual objects possible. It
makes great use of physical devices by enabling application

to use these physical devices while these devices belong to
different context. All virtual objects are registered in the
registry, and when the life cycle of the virtual object is over,
garbage collection is executed.

B. Garbage Collection Mechanism

Garbage collection is executed when some virtual
object’s life cycle is over. This paper proposed a new
garbage collection mechanism:

(1) When a physical device is out of its context, the
garbage collector will look up in the VO registry and the
CVO registry to find all records related to the device, and
execute garbage collection on this device.

(2) When some IoT application terminates and some
virtual object’s life cycle is over, the garbage collector will
look up in the VO registry and the CVO registry to find all
records related to the device. If not found, then garbage
collection is executed, otherwise, decrease the reference
counter of the virtual object.

(3) When it involves both VO and CVO, we need to
consider that CVO is composed of VOs, all references to
CVO will influence the references to VO. When multiple
IoT applications use the same CVO, obj. when obj’s
reference counter changes, the reference counters of the VOs
that consists obj will not change. VO’s reference counter
only increases when another CVO references to it. When
CVO is destructed, the reference counter of the VOs that
consists obj will decrease accordingly.

There is one big flaw in java reference counting, which is
reference-counting. When two virtual objects references each
other, then both of these virtual objects’ reference counter
cannot reach 0, which leads to the storage space waste. To
this, this paper designed smart device, it’s an extension of
virtual object and it solves the reference counting problem.

C. Smart Device

Smart device is divided into shared device and auxiliary
device. Shared devices provide services that are used to
control the real world objects. Shared devices also maintain
the reference counters of the virtual objects, and auxiliary
devices don’t keep the reference counters, they are used to
monitor the usage of shared devices. When circular
references are required between virtual objects, we may use
auxiliary devices to avoid the circular references. As showed
in Fig. 1:

Figure 1. Cases before and after using auxiliary devices

Advances in Computer Science Research, volume 44

277

Fig. 1-a shows codes before we use auxiliary device, and
Fig.1-b shows codes after using auxiliary device. Auxiliary
device itself doesn’t increase the reference counter of the
virtual object, so no circular reference problem will occur.

This paper added manager object to smart device to
implement the sharing and counting, manager object is the
encapsulation of managed device. Reference counters used
in shared devices and auxiliary devices actually counts the
references to this manager object. Fig. 2 shows how the
smart object works

Figure 2. How smart device works

The process begins when the managed object is
dynamically created and the first shared device sd1 is created
to point to it; the constructor of shared device dynamically
creates a manager object, which contains the real managed
device. The manager object also contains two reference
counters: the shared count counts the number of shared
devices pointing to the manager object, and the auxiliary
count counts the number of auxiliary devices pointing to the
manager object. When sd1 and the manager object are firstly
created, shared count will be 1 and the auxiliary count should
be 0.

If another shared device sd2 is created with sd1, it also
points to the same manager object and the constructor
increments the shared count, and now there are 2 shared
devices pointing to the managed object. Likewise, when an
auxiliary device is created with a shared device or another
auxiliary device, they points to the same manager object and
the auxiliary device is incremented. Fig. 2 shows the
situation after 3 shared devices and 2 auxiliary devices have
been created to point to the same object.

When a shared device is destroyed or reassigned to point
to another object, the shared device destructor decrements
the shared count. Similarly, destroying or reassigning an
auxiliary device will decrement the auxiliary count. When
the shared count reaches 0, the manager object will be
deleted and the managed device will be deleted from the
registry, but if the auxiliary count is greater than 0, the
manager object is kept. If the auxiliary count reaches 0 too,
the manager object will be deleted. In general, the managed
device stays as long as there are shared devices pointing to it,
and the manager object stays as long as there are either
shared devices or auxiliary devices referring to it.

Shared device and auxiliary device have a basic
difference: shared device can be used almost identically to a

virtual object, in fact, it will provide all the interfaces that the
virtual object can provide. However, an auxiliary device is
much more limited. Users cannot use it like a virtual object,
more specifically, it cannot be used to actually refer to the
managed device at all. The only operation that an auxiliary
device can provide is to interrogate it to see if the managed
device is still there. If the managed device is gone, the shared
device will be an empty one; if the managed device is
present, then the shared device can be used normally.

IV. IMPLEMENTATION

This paper is based on intel-iot-services-orchestration-
layer[13], which is a total solution that provides visual
graphical programming for developing IoT applications. We
modified the entity-store part of the project and added smart
device and garbage collection method.

A. Smart Device

Smart devices are divided into shared devices and
auxiliary devices. When a real world object registers in the
IoT system, a virtual object is created dynamically. The
owner of the device can set the priority level of the device,
and the device manager will create smart devices according
to the priority level. The interfaces that the shared devices
and auxiliary devices provide are shown in Tab. 1 and Tab. 2.

TABLE I. INTERFACES OF SHARED DEVICES

Construct(managed_device

md, priority)

create shared device with device

and its priority

Construct(shared_device sd)
create shared device with

another shared device

Reset
reset shared device to make it

not point to the original device

RefCount
get the reference count to the

shared device

GetAuthority
get the priority level of the

shared device

Destruct destroy shared device

TABLE II. INTERFACES OF AUXILIARY DEVICES

Construct(shared_device sd) destroy shared device

Construct(auxiliary_device ad) create auxiliary device with

another auxiliary device

Reset reset auxiliary device to make it
not point

to the manager object

RefCount get the reference count to the

shared device

GetShared get the shared device

Destruct destroy auxiliary device

B. VO & CVO Registry

VO is the virtual map to the real world object, when a

real world object is register, the system creates VO

according to the context and the metadata of the device. VO

includes status, owner, etc. VO is stored in the system as a

key-value pair, every VO consists of device ID and device

object, and VOs are stored in the VO registry which is

stored in a specific file in the file system. CVO is comprised

Advances in Computer Science Research, volume 44

278

of several VOs and is also stored in the CVO registry. When

receiving the request to create composite service from upper

level, the management unit searches the CVO registry for an

existing CVO that can provide the service. If such a CVO is

unavailable, then it perms a look up in the VO management

unit to find relevant VOs that belong to the CVO. The CVO

holds the meta-data of the VO, along with details to connect

to the VO and real world object in turn.

C. Construction & Destruction of Smart Devices

The construction of smart devices requires the
functionalities and priority level the real world object. At
first, every smart device is assigned a unique ID as the key of
the key-value pair, then a virtual object is created according
to the functionalities as the value of the key-value pair.

The destruction is more complicated. For deletion of
CVO, the CVO management unit searches the CVO registry
to find the CVO and decrement the reference count by 1, if
the reference count reaches 0, then CVO is erased from the
registry, and the VOs that the CVO contains will update their
reference counts. Similarly, for deletion of VO, the VO
management unit performs a look up in the VO registry and
decrements the reference count by 1, if it reaches 0, then
delete the VO from the VO registry.

V. RESULTS AND DISCUSSION

With the fully functional implementation, tests were
carries out to understand the timing information for the
garbage collection of the smart devices. Simulations were
performed varying the number of VOs in the VO registry. It
has been observed, based on the current implementation, the
garbage collection method is correct and the time taken to
execute garbage collection didn’t show a great increase. We
tested in 3 different applications in order to ensure the
correctness of the results and as shown in figure, our garbage
collection method shows good performance as the number of
VO increases.

Figure 3. Execute time of garbage collection.

VI. CONCLUSION

Virtual objects play an important role in IoT applications,
and how to manage virtual objects efficiently and properly is
a severe problem. Garbage collection towards virtual objects
has not been mentioned in current virtual object management
systems. This paper proposes a garbage collection method
based on reference counting method. In order to settle the
circular references problem, we introduce smart device.

In future works, we will concentrate on the usage of the
smart device, it is only used for garbage collection for now.
Priority level of virtual objects and management of users
information will also be considered.

REFERENCES

[1] D. Kelaidonis, A. Somov, V. Foteinos, G. Poulios, V. Stavroulaki, P.

Vlacheas, P. Demestichas, A. Baranov, A. R. Biswas, and R.

Giaffreda, "Virtualization and cognitive management of real world

objects in the internet of things," in Green Computing and

Communications (GreenCom), 2012 IEEE International Conference
on. IEEE, 2012, pp. 187–194

[2] Vlacheas P, Giaffreda R, Stavroulaki V, et al. Enabling smart cities

through a cognitive management framework for the internet of
things[J]. IEEE communications magazine, 2013, 51(6): 102-111.

[3] Foteinos V, Kelaidonis D, Poulios G, et al. Cognitive management for

the internet of things: a framework for enabling autonomous

applications[J]. IEEE Vehicular Technology Magazine, 2013, 8(4):
90-99.

[4] Foteinos V, Kelaidonis D, Poulios G, et al. A cognitive management

framework for empowering the internet of things[C]//The Future
Internet Assembly. Springer Berlin Heidelberg, 2013: 187-199.

[5] Venners B. Inside the Java virtual machine[M]. McGraw-Hill, Inc.,
1996.

[6] Nitti M, Pilloni V, Colistra G, et al. The Virtual Object as a Major

Element of the Internet of Things: a Survey[J]. IEEE
Communications Surveys & Tutorials, 2015, 18(2): 1228-1240.

[7] R. Weinstein, ―RFID: a technical overview and its application to the

enterprise,‖ IT Professional , vol.7, no.3, May-June 2005, pp. 27- 33.

[Online]. Available: IEEE Xplore Digital Library, doi:
10.1109/MITP.2005.69. [Accessed: Oct. 2012].

[8] K. Aberer, M. Hauswirth, and A. Salehi, ―Infrastructure for Data

Processing in Large-Scale Interconnected Sensor Networks‖, Proc. of

the International Conference on Mobile Data Management (MDM 07).

Washington, DC, USA, May 2007, pp. 198-205. [Online]. Available:

ACM Digital Library, doi: 10.1109/MDM.2007.36. [Accessed: Oct.
2012].

[9] FI-WARE. (2011–2014). Core platform of the Future Internet

[Online]. Available: http://www.fi-ware.org/, European Commission
under the 7th Framework Programme

[10] SENSEI. (2008). Integrating the Physical With the Digital World of
the Network of the Future [Online]. Available:

[11] IoT-A. (2010). Internet of Things—Architecture [Online]. Available:
http://www.iot-a.eu/

[12] iCore. (2011). Empowering IoT Through Cognitive Technologies
[Online]. Available: http://www.iot-icore.eu/

[13] intel-iot-services-orchestration-layer(2015). The total solution that

provides visual graphical programming for developing IoT

applications[Online]. Available: https://github.com/01org/intel-iot-
services-orchestration-layer

Advances in Computer Science Research, volume 44

279

