
Arana: A Cross-domain Workflow Scheduling System

Jian-Hua Gu, Xue-Yuan Lan, Ying Hao, Yu-Tong Hu

School of Computer Science, Northwestern Polytechnical University, Xi’an, P.R.China
E-mail: gujh@nwpu.edu.cn, 18710832737@163.com, haoyying@mail.nwpu.edu.com, hytt502@gmail.com

Abstract-Single data center is difficult to meet current demands

of data storage and computing resources, leading to data

broadly stored in different data centers far from each other

geographically. Cross-domain big data processing usually

requires data from other data centers across different network.

Since the network environment is extremely complex and large

amount of data is required for computing, time spent in data

transmission is unacceptable, resulting in slow scheduling. In

this paper, we propose a cross-domain workflow scheduling

system called Arana. By moving program close to data and

integrating popular big data processing platform, this system

enables user to complete computing with cross-domain data

without transferring.

Keywords-workflow; cross-domain; big data; close to data;

schedule

I. INTRODUCTION

The continuous development and progress of computer
technology has promoted data size growing in an incredibly
quick speed in field of scientific research, computer
simulation, internet applications, and e-commerce etc. [1]
Storing such amount of data has far exceeded the capacity of
single node, let alone single data center. A program may
need to analyze data across different nodes to obtain correct
results. When data centers are far from each other
geographically, how to use remote data conveniently has
become an urgent problem to be solved.

Since data are not locally available in cross-domain tasks,
the traditional solution is to transmitting data to local and
then processing task. There are two obvious shortcomings in
this acquire-store solution. The first is that transmission time
of huge amount of data may be too long to accept in practice.
The second is that user may not have access to required data
due to security issue or any other reasons.

To solve problems mentioned above, we propose Arana,
a cross-domain workflow scheduling system, greatly shorten
the scheduling time by moving program close to required
data. Arana make program initiatively seek data that need to
be processed, complete task calculation on the data node,
finally receive and integrate results. Using Arana, a lot of
time spent on scheduling data can be saved and user’s
computing tasks can be executed in time. Thus, the overall
throughput can be significantly improved.

Arana also provides the function of workflow scheduling.
In Arana we consider one workflow as a job. User can
customize different task program for different data nodes,
compose these programs as a job and then submit it to Arana.
Arana will automatically schedule the job and ensure the
reliability.

Moreover, Arana uses lightweight database to store
workflow information, which makes Arana able to restore
the runtime environment immediately after a performing
error while meeting the demands of storage, thus the
reliability of jobs can be guaranteed.

In section 2, we will briefly introduce related works, a
brief description of the advantages and disadvantages of
these system and Arana’s advantages. Section 3 mainly
introduces Arana and how Arana guarantee the reliability of
the system. The evaluation of the system locates in section 4,
where we can see Arana shorten job scheduling time greatly.

II. RELATED WORKS

The study of computing remote big data nowadays
mainly focus on fast data acquisition from remote nodes and
optimizing execution time. However, this two study aspects
have been limited a lot. When devoting to decrease
execution time, time spent on data transmission is also need
to be considered, since the data transmission time usually
accounts for a substantial part of overall time in big data
calculation projects [2]. As well as the speed of data
transferring is limited to network status. The crossing field of
the two technologies has been repeatedly investigated by
related researchers.

The Stork data placement scheduler [3] [4] aims at data
intensive applications which access, create, and move large
amounts of data over wide area networks. Stork provides
solutions for many of the data placement problems
encountered in the distributed computing environments with
its data placement scheduler. Stork can locating data, moving
data in a predicable way. HPGOSS [5] based on parallel file
System is used for eliminating I/O performance bottleneck
and deal with the data managing issues resulting from the
close relevancy between geo-information and remote
sending image data, which data are distributed on different
nodes in different regions. Encountered with huge amount of
data, either Stock or HPGOSS need considerable time to
complete data transfer, which will cause low performance.

Close-to-Files (CF) job-placement algorithm tries to
place job components on clusters with enough idle
processors which are close to the sites where the input files
reside [6]. Placing data as close as possible to computation is
a common practice of data intensive systems, commonly
referred to as the data locality problems [7]. DARE, a
distributed adaptive data replication algorithm, aids the
scheduler to achieve better data locality.

Thus, placing computation close to data can save a lot of
work and make great improvement on I/O performance in
remote data computing environment. In traditional ways,
Telnet protocol can be used to login remote node to execute

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

334

tasks, analysis data, debug program etc. Except for running
programs background, using Telnet requires enough speed to
meet the need of interactive processing.

Using Telnet command, local node needs to have the
privilege to login remote node. When computing on remote
node, user firstly needs to manually copy program from local
node to remote node, then debug and run program on remote
node, wait till the end of running, and finally copy result
from remote node to local node manually. User needs to
participate the whole procedure. Except for coding
computing program, Arana can complete the whole
procedure automatically.

To some extent, Arana is a lightweight job scheduling
system. It sends programs to nodes which holds data instead
of execution after acquire data from the remote, which saves
a lot of time spent on data transmission. It realizes high
performance in scheduling and quick recovery, scalability,
and reliability. Moreover, by our predefined interface, Arana
is applicable to execute mapreduce, java programs etc.

III. SYSTEM DESIGN

A. Architecture

Arana can be structurally divided into two modules, job
scheduling engine and task execution engine. Job scheduling
engine module, which is deployed in local node, consists of
two layers: job monitoring layer and job scheduling layer. It
is responsible for parsing the job that user submit. Job, as
well as the tasks in the job is descripted by the process
description language that we define. The job scheduling
engine is also responsible for receiving the state update of
the task, so as to decide the next task that should be
scheduled.

The task execution engine module utilizes the Hadoop
distributed system at the bottom layer to achieve high
scalability and big data distributed storage. The upper layer
schedules the task that send to this computing node. At the
same time, by real-time monitoring Hadoop, this layer
acquires the state of the task, and update them to the job
scheduling engine. Fig. 1 illustrates the Arana architecture.

Figure 1. Arana architecture

B. Job Scheduling Engine

As the core of Arana, scheduling Engine receives jobs
that user submitted, schedules executable tasks, dispatches
tasks to their nodes and monitors jobs’ life cycle. Finally, it
aggregates the results from each node into the final result.

In Arana we see a user defined process as a job. In
general, JOB= (ID, Name, Task1, Task2, Task3…), TASK=
(Sequence Number, Type, Target Host Address, Program,
Parameter, Subsequent Task). Usually, job defined by user is
a DAG (Directed Acyclic Graph). According to the above
definition, we can split a DAG into several vectors. Job
scheduling engine only need to pay attention to the JOB
vector.

As shown in Fig. 2, the job scheduling engine allocates
resources for each separate job. Each job schedules its own
tasks respectively. Through pre-allocating resources, after
user submit a new job, scheduling engine can quickly set the
job ready, involve the job in scheduling immediately. After
picking out the tasks that can be executed in the next step,
scheduling engine will sent out the tasks to release the
resources. By storing job and its metadata in database,
virtually every job occupies few resource in memory.
Scheduling engine only needs to know job ID. A large
number of other information are stored in the database. So
job scheduling engine can maintain a high throughput under
a large number of jobs, and job queuing rarely appears.

Fig. 3 explains the complete scheduling process for a
typical job:

a) When a new job is submitted to the job scheduling
engine, it will first be decomposed into a few task vectors
by Analyzer.

b) Next, these vectors will be stored in metadata
database. Job will be identified by its ID, and task will be
identified by its job ID and sequence number.

c) Scheduler will retrieve the database table, pick out
the executable tasks, and send them to Dispatcher.

d) On the basis of the information in the task vector,
dispatcher will sent task to the corresponding remote node
for execution.

e) According to the information returned by remote
node, (3) (4) may be executed several times to complete the
entire job scheduling.

f) Finally, scheduling engine will integrate different
tasks’ result. Usually, the integration program is also written
by user.

SchedulingEngine

Job

Job

Job

RemoteNode

RemoteNode

RemoteNode

RemoteNode

RemoteNode

.

.

.

.

.

.

Figure 2. Job scheduling engine

Advances in Computer Science Research, volume 44

335

Submit Analyzer

Database

Dispacher

Scheduler

RemoteNode

RemoteNode

Aggregation

Figure 3. Job scheduling

C. Task Execution Engine

The task execution engine receives the task vector from
job scheduling engine. Because the main analytical work has
been completed by job scheduling engine, the task execution
engine only needs to complete the preparatory work and
submits the task to the specified environment or execution
platform. Then begin the task execution phase.

During task execution, the execution engine also needs to
complete some operations specified by user, such as creating
result file, cleaning temporary data etc. Task monitoring as a
core function is essential for task execution engine. Now we
have realized the monitoring of the Hadoop platform and
Java program, which can monitor the state of submitted job
in real-time, pull the execution information from Hadoop
and send them back to user.

And through the interface that we define, Arana can
easily be extended to other system. The monitoring module
returns the task execution state and real-time running
information to scheduling engine. Scheduler combines these
information to complete job scheduling. Scheduling engine
can also be aware of task execution error through these
information, and feedback error information to user timely.

D. Metadata Database & Reliability

Metadata database is a powerful means for Arana to
ensure reliability. Metadata database is an independent
database system, so it can be configured to satisfy the needs
of different levels of reliability. At the same time, database
keeps all the information jobs and tasks need. The reliability
of the scheduling engine and execution engine both depend
on metadata database.

The state of job and task are defined in detail. In example
of task state migration, a simplified task state migration can
be roughly expressed as follows:
RECEIVE—RUNNING—SUCCESS (or FAIL)—FINISH.
Of course the actual state migration is more complicated, but
the main state transfer can be divided into the above steps.
Through real-time monitoring, the task state changes will
update to the database.

When system or process fails, first step after the
resumption is to scan the database overall. Since the state
information has been saved, Arana can quickly locate the
task execution position and the next scheduling will soon
start again. When crash results in inconsistent information of

scheduling engine and execution engine, as state transfer
cannot fallback, through one update information system can
quickly recover. Based on its preserved information,
execution engine can also avoid unnecessary task re
execution errors.

IV. EVALUATION

In this section, we mainly test the performance of Arana
under multi nodes cluster. Whether start scheduling time of
Arana will be significantly affected when a large number of
jobs is submitted to system is evaluated. And the resources
Arana uses is evaluated when scheduling a large number of
jobs.

A. Environment Preparation

20 nodes with Intel Xeon E5-2670, 64G memory, 8
SATA hard disks of 16T (single disk capacity 2T) and 8
processor (2.60GHz); 4 Hadoop clusters is simulated, each
including 5 nodes.

Test data sets are mainly collected from Internet,
including the latitude and longitude coordinates of
geographic names. But there is a lot loss in the latitude and
longitude information. The test program is to calculate the
latitude and longitude of geographic names according to the
existing latitude and longitude information.

B. Performance Test

First, we analyze the start scheduling time. The start
scheduling time of a job is refer to the time spent from the
job is submitted to its first task is scheduled. Task execution
time is related to specific task, which we don’t analyze here.
Fig. 4 shows that Arana has a good scheduling efficiency for
submitted jobs. Under the number of submitted jobs of 1, 5,
15, the start scheduling time slightly fluctuates. When the
number of submitted jobs increase up to 800 or 1000, the
average start scheduling time of each job is gradually
approaching to 600ms, and the fluctuation is within
reasonable range. Fig. 4 indicates scheduling time of a job
can be well controlled in Arana and job can be processed
immediately after submitted to Arana.

Figure 4. Start scheduling time

Fig. 5 shows the memory usage of Arana while job
continues to be submitted to the system. When system starts,

520
530
540
550
560
570
580
590
600
610
620
630
640
650
660

1 5 1 5 3 0 5 0 1 0 0 2 0 0 3 0 0 5 0 0 8 0 0 1 0 0 0

A
V

ER
A

G
E

SC
H

ED
U

LE
 T

IM
E(

M
S)

NUMBER OF JOBS

Advances in Computer Science Research, volume 44

336

Arana takes less memory, only 57M. After the first job is
submitted, the memory usage begins to increase rapidly,
which is because some resources are only allocated when job
is being scheduled. The growth rate slows down in the
second half of the curve, which is because resources used by
previous complete jobs has released while there are still new
jobs coming. As described in the previous section, Arana
store workflow information in database, therefore, the cost of
the new jobs is reduced to minimum. There is a small
amplitude increase in the latter half of the curve, because
Arana will cache some key information to speed up the
scheduling of tasks. Finally, the memory usage of Arana
floats around 300M.

Figure 5. Memory usage

V. CONCLUSION

This paper firstly introduces some big data processing
platform aims to explain the differences between them and
Arana. The difference is that their optimization objective is
to make data more close to calculation. Arana, on the
contrary, based on the idea of make calculation more close to
data, reduces unnecessary data movement to obtain better
performance, which is much more suitable for cross domain
job scheduling. In addition, using Hadoop platform in the
bottom layer, scalability and distributed storage are
significantly improved.

We use database to obtain higher reliability, but with the
number of tasks grows, communication with database has
become the bottleneck of system performance. And Arana

currently only supports Hadoop, but using the interface that
we define, Arana has the ability to access more big data
processing platform, by integrating more big data processing
platform, we can achieve a more unified scheduling system.
These are what we should devote to in the future.

ACKNOWLEDGMENT

Sponsored by the Seed Foundation of Innovation and
Creation for Graduate Students in Northwestern
Polytechnical University.

This work is supported by the Science & Technology
Innovation Engineering Program of Shaanxi Province under
Grant No.2015KTZDGY08-03-01.

REFERENCES

[1] Zhou AY. Data intensive computing-challenges of data management
techniques. Communications of CCF, 2009,5(7):50-53.

[2] Thakkar, Shraddha; Patel, and Sanjay, Scheduling in big data

heterogeneous distributed system using Hadoop. Advances in
Intelligent Systems and Computing, v 409, p 119-131, 2016.

[3] Kosar, Tevfik, Data intensive computing-challenges of data

management techniques. Proceedings - Challenges of Large

Applications in Distributed Environments, CLADE 2006, v 2006, p
5-12, 2006.

[4] Kosar, Tevfik, Livny, Miron, A framework for reliable and efficient

data placement in distributed computing systems. Journal of Parallel
and Distributed Computing, v 65, n 10, p 1146-1157, October 2005.

[5] Ma Yan, Liu Dingsheng; Li Jingshan, A new framework of

cluster-based parallel processing system for high-performance

geo-computting. International Geoscience and Remote Sensing
Symposium (IGARSS), v 4, p IV49-IV52, 2009.

[6] Mohamed H.H., Epema D.H.J., An evaluation of the close-to-files

processor and data co-allocation policy in multiclusters. IEEE

International Conference on Cluster Computing, ICCC, p 287-298,
2004

[7] Abad Cristina L., Lu Yi, Campbell Roy H., DARE: Adaptive data

replication for efficient cluster scheduling. IEEE International
Conference on Cluster Computing, ICCC, p 159-168, 2011.

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
e

m
o

ry
 U

sa
ge

(M
)

Time

Advances in Computer Science Research, volume 44

337

