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Abstract—This paper studies the path tracking control of four-

wheel steering autonomous vehicles in presence of 

uncertainties of tire-road condition, modeling uncertainties, 

and unexpected disturbances. Due to the fast convergence of 

the wheel subsystem, the simplified vehicle model can be 

developed based on the singular perturbation. Both the state 

feedback and the observer-based output feedback controllers 

are derived using the linear matrix inequalities. The main 

results rely on a multi-objective approach which can handle 

various closed-loop specifications, such as disturbance 

rejection and robust stabilization on different channels within 

the LMI (Linear Matrix Inequalities) synthesis framework. 

Simulation results show that the proposed controller can 

effectively improves the path tracking performance. 

Keywords-path tracking, four-wheel steering (4WS) vehicles, 

parameter uncertainty, disturbance attenuation, quadratic 

stabilization. 

I.  INTRODUCTION 

Intelligent vehicle systems have recently become an 
attractive area of research throughout the world. The aim of 
the research effort is mainly enhancing driving safety and 
reducing the driver's workload [1]. Autonomous ground 
vehicle (AGV) has the great advantages including the 
improved security, better road utilization, and reduced 
mobility costs, and thus it has become an emerging research 
focus worldwide [2]. One of the principal control issues for 
AGVs is path tracking [3-4]. To guarantee the vehicle lateral 
stability, it is essential to consider the lateral dynamics for 
the path tracking control of ground vehicles, which has 
always been very important and extensively researched. 

Although a considerable amount of research on motion 
control has been reported to ensure path tracking of four-
wheel steering (4WS) vehicles during the past couple of 
decades, such as asymptotic decoupling control [5-6], robust 

H  control [7-8], sliding model control [9], prediction 

control [10], fuzzy control [11-12], and nonlinear adaptive 
control [13-14], there still remain certain open problems in 
this field that are of great theoretical and practical interest. In 
particular, due to the real-time implementation and external 
disturbance torque rejection, there currently exists no unified 
framework for designing user-friendly and cost-effective 
control scheme for 4WS autonomous vehicles. Furthermore, 
since some of the system parameters(such as normal load) 
are even time varying and precisely unmeasurable, those 
control schemes that strictly rely on such parameters seldom 
work efficiently in practice [15-17]. 

This paper proposes a path tracking controller for 4WS 
vehicles in the presence of uncertainties of both tire-road 
condition, modeling uncertainties, and unexpected 
disturbances. The proposed technique uses multi-objective 

synthesis approach in the multi-channel spirit. The H
 norm 

is used to guarantee the disturbance attenuation and robust 
stability [18]. First, the state feedback controller is designed, 
and the corresponding state feedback gain can be obtained 
the LMI (Linear Matrix Inequalities) optimization. Next, an 
observer-based output feedback controller is proposed, and 
the LMI formulations of the closed-loop system 
specifications and objectives such as disturbance attenuation 
and quadratic stability are derived for this scenario. 

The subsequent parts of this paper are organized as 
follows. Section 2 presents the system modeling, including: 
vehicle dynamics, dynamics of path tracking, friction forces, 
and uncertain vehicle system. Section 3 address the 
controller design via LMI optimization, where both nonlinear 
state feedback and observer-based output feedback 
controllers are proposed. Section 4 presents the simulations 
and performance evaluation. Finally, we conclude our 
findings in Section 5. 

II. SYSTEM MODELING 

A. Vehicle Dynamics 

Wherever Times is specified, Times Roman or Times 
New Roman may be used. If neither is available on your 
word processor, please use the font closest in appearance to 
Times. Avoid using bit-mapped fonts if possible. True-Type 
1 or Open Type fonts are preferred. Please embed symbol 
fonts, as well, for math, etc. 

The model considered here consists of 7 degrees of 
freedom (DOF), including longitudinal, lateral motions and 
yaw motion of the vehicle in addition to the rotational 
dynamics of the four wheels. The vehicle body-fixed 
coordinate system is used to set up the model. These are 
shown in Fig. 1. The governing equations of motion for the 
vehicle can be expressed as follows: 

Longitudinal motion: 

   2

x y x aero xm v v F C v    (1) 

Lateral motion: 

  y ym v F   (2) 
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Yaw motion: 

 z zJ M   (3) 

Wheel rotational equations of motion for wheels are as 
follows: 

 cos  sinwj j j j j jI w T r        (4) 

where 
xv  denotes the longitudinal vehicle velocity, 

yv  the 

lateral vehicle velocity,   the yaw rate and   the vehicle 

side slip angle. Notations m  and 
zJ  are the mass of vehicle 

and the inertia about z  axis, respectively. 
aeroC  represents 

the coefficient of aerodynamic drag. 
wjI  and 

jr  represent the 

moment of inertia and the radius of wheel j . 
jT  and 

j  are 

the wheel torque and wheel steering angle used for the 

control scheme. 
xF , 

yF , 
zM  are the sums of the 

external forces and moments acting on the vehicle. 

 
   
   

1 2 3 4

1 2 3 4

1 2 3 4

2 1 4 3          

x x x x x

y y y y y

z f y y r y y

d x x d x x

F F F F F

F F F F F

M l F F l F F

l F F l F F

   

   

   

   






 (5) 

In the above equations, 
xjF , 

yjF  and  1,2,3,4zjM j  , 

defined in the body fixed x y z   coordinate system, are 

the external forces and yaw moments mainly resulting from 

tire/road friction. 
fl , rl  and dl  are the distances from the 

center of gravity to the front axle, the rear axle, and the 
wheel side. 

CG

 
Figure 1.  vehicle model 

B. Dynamics of Path Tracking 

Because the sensors that measure the lateral deviation are 
not normally fixed on the vertical line through c.o.g. 
Furthermore, feedback based on error measured at the c.o.g. 
leads to bad ride comfort. Hence, it is natural to describe the 
vehicle dynamics with respect to the lateral displacement at 

the sensor, i.e., 
ly . 

The path tracking dynamics can be expressed as [1] 

 
 

l ref x

l x l s l

v

y v l

  

  

 

  
 (6) 

where 
l  is the angle between the road centerline and the 

vehicle longitudinal axis in radians, and 
sl   represents the 

horizontal distance to the sensor from the CG . 
ref  is the 

path curvature. 

C. Friction forces 

The wheel velocities can be derived by two components: 

the component due to the CG  velocity and the component 
due to the motion about the vertical vehicle axis z  , i.e., 
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3 4

3 4

,   

,   
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y y f y y f

x x d x x d

y y f y y f

v v l v v l
v v

v v l v v l

v v l v v l
v v

v v l v v l

 

 

 

 

        
          

        

        
          

        

 (7) 

Here, the combined wheel slip is defined according to the 

Burckhardt approach [2]. The longitudinal slip LS  is defined 

in the direction of the wheel ground contact point velocity 

, 1,2,3,4jv j  , and the lateral slip SS  at right angles to this. 

For braking, the combined wheel slip ( cosrj j wjv v  ): 

 
 cos

sin

rj j wj wj

j

rj j wj

v v v
S

v v





 
 
 
 

 (8) 

For driving, the combined wheel slip ( cosrj j wjv v  ) 

 
 cos cos

tan

rj j wj rj j

j

j

v v v
S

 



 







 


 (9) 

where the tire side slip angle 
j  is the angle between the 

wheel plane and the velocity of the wheel ground contact 
point 

  , tan j j j j yj xjv v        (10) 
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The resultant slip jResS S  is directed in the same 

direction as the resultant friction co-efficient 
Res . 

Res  is a 

scalar saturation function depending on the magnitude of 

resultant slip 
ResS  and road condition. It is known that when 

ResS  exceeds a threshold associated with road condition, the 

corresponding 
Res  saturates and so does the related friction 

force. Thus, the friction forces in the longitudinal and lateral 
directions can be expressed as follows 

 

SL
xj zj Res j Res S j

Res Res

S L
yj zj Res S j Res j

Res Res

SS
F F cos k sin

S S

S S
F F k cos sin

S S

   

   

 
  

 

 
  

 

  (11) 

Define 

  (12) 

Then 

 
0

0

xj j j j Lj

zj

yj j j S j Sj

F cos sin k S
F

F sin cos k k S

 

 

       
       

       
   (13) 

where the slope 
jk  in equation (12) depends mainly on road 

conditions. A better road condition leads to a larger slope 
jk  

and in turn provides a larger friction force. Assuming that the 

vehicle runs on a uniform road condition, and thus 
jk in 

equation (12) have the same value as k . 

D. Uncertain Vehicle System 

Because the wheel subsystem converges much faster, 
based on the concept of singular perturbation theory, we can 
replace the wheel subsystem with its quasi-steady state for 
model reduction, which yields 

 ,  
j j

Lj xj

z j j

T T
S F

F r k r
    (14) 

and using velocity approximation 

 

0

j

Sj j j j

l
S

v
           (15) 

where 
1 2 3 4,  f rl l l l l l    . Take 

T

j jT     as virtual 

control, and the control structure of wheel torque and 
steering angle is proposed as 
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 

 

  

 

      
             

      
             

      
       

       

    
     

     

2

2

L

S

S

S

 
 
 

 (16) 

then the vehicle model is as following: 

 

1 2

1 1

2

,   ,   u

x Ax B w B u

z C x z C x z u

y C x

 

  

  



 (17) 

where 

 1 1 2 2

2

0

0

0 0

1

0 0

11 31
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2

13 33

24

1

,

, / ,

2 / 0 0 0 0
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0 0 1 0 0
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,

0 0 0

0 0 0

0 0 0 0
,
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0 0 0 0

,
T

x y l l

T
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T
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s

T

s

T
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A
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b b
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B
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b

C

 


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

   

 
 


 
 
 
 
 
 

 
  

  

 
 
 
 
 
 

 

2

1 3 2 4

11 13

1 3 2 4

22 24

0 0

1 3 2 4

31 33

0 0 0 0 1 ,  ,

0 0 1 0 0
,

0 0 0 0 1

( ) ( )
,  ,

( ) ( )
,  ,

( ) ( )
,  

z z z z

z z S z z S

d z z d z z

z z

C I

C

F F k F F k
b b

m m

F F kk F F kk
b b

mv mv

l F F k l F F k
b b

J J

 

 
  
 

 
 

 
 

  
 

 

The normal loads 
zjF  on the four wheels, the road condition 

k , and the coefficient of aerodynamic drag aeroC  can be 

expressed as their nominal values plus perturbations: 
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 0 5

6

,  1, , 4

,

zj zj zj j

aero aero aero

F F F j

k k k

C C C







   

  

  

  (18) 

where 
zjF , k , and 

aeroC  are the variation envelopes of  

zjF , k , and 
aeroC , and 

j  are the normalized uncertainties. 

The perturbations in matrices A  and 
2B  caused by the 

variations of 
zjF , k , and 

aeroC   can be written as 

 
2 2 2 2 2 2 2

A A A

B B B

A A A A

B B B B

     

     
  (19) 

where A  and 
2B  represent the nominal matrices and 

A  

and 
2B  are the diagonal matrices with the normalized 

uncertainties 
i  in the diagonal entries. The detailed results 

are shown as follows 

   

   

1 3 2 4

22 24

0 0

1 3 2 4

31 33

,  ,

,

z z S z z S

d z z d z z

z z

F F kk F F kk
b b

mv mv

l F F k l F F k
b b

J J

 
 

  
 

 

Substituting (19) and (20) into (17), the uncertain vehicle 
system can be derived as 

 
   1 2 2

1 1 2,   ,   ,   u

x A A x B w B B u

z C x z C x z u y C x 

    

   
 (21) 

III. CONTROLLER DESIGN 

A. State Feedback Control 

Introducing the variables v z  , and z   

   2

T
T T

A Bx u  
 

,then the uncertain term can be 

described as 

   2 2A B A BAx B u E z           (22) 

where 

    2,   diag ,A B A BE         (23) 

Using the state feedback u Kx , and in view of (22), it 
follows that 

 
2 1

1 1 2

( )

,  ,  ,  u

x A B K x B w Ev

z C x z C x z u y C x 

   

   
 (24) 

1) Disturbance Attenuation 
The LMIs for disturbance attenuation of the closed-loop 

system are first formulated without considering uncertainty. 
Consider the system 

( ) ( ) ( )

( ) ( ) ( )

x t Ax t B t

z t Cx t D t





 

 
 

where ( ) nx t  , ( ) lt  , and ( ) pz t   are the states, 

input and output of  the system. Given the constant 0  , 

the system is said to be asymptotically stable and 

( )zT s 

  if and only if there exists positive definite 

matrix 0P  , and satisfying the following 

 0

T T

T T

q

m

A P PA PB C

B P I D

C D I





 
 

  
  

 (25) 

Substituting the matrices of the closed-loop system into (25), 
we obtain the following inequalities 

 

1 1

2

1 0 0

0

T

T

B XC

B I

C X I









 
 

  
  

 (26) 

where 
1 2 2

T T TAX XA B Y Y B     , and X  is positive 

definite matrix. 

2) Quadratic stabilization 
In this section, we consider the quadratic stabilization of 

the closed-loop system with 0w  . Quadratic stability of 
system (24) has the frequency-domain interpretation that the 

H  norm of the transfer function from v  to z  is less than 

one. That is, system (24) is said to be quadratic stabilization 

if and only if 2A B K  is a stable matrix and the transfer 

function z vT


 form v  to z  satisfies 

  2 1 0jC SI A B K B     (27) 

where ( )T T

j A BC K     . The LMI formulation of 

quadratic stabilization can be described as 

 

1

0 0
0

0 0

0 0

T T T

A B

T

A

B

E X Y

E I

X I

Y I

   
 

  
  
 
   

  (28) 

with 1 2 2

T T TAX XA B Y Y B     . 

3) Disturbance attenuation with uncertainty 
To guarantee the closed-loop system to be quadratic 

stable with disturbance attenuation   , we consider the plant 
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 ˆˆ ( )z T s w   (29) 

where ˆT T Tz z z 
    , T T Tw w v    , 

  

1

2 1

0 0

0 0
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A

B
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C
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 




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 
 
 
 
  

 (30) 

The transfer function ˆẑwT  from ŵ  to ẑ  is 

 

1

ˆˆ

z w

zw

z v

T
T

T









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  
  

 (31) 

It is obvious that z wT 
   and 1z vT


  can be both 

guaranteed if ˆˆ 1zwT  . We have the following results. 
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T

T

A

B
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






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 

 
 

 
 

  
 
   

 (32) 

then the state feedback controller is derived by 

 1K Y X  (33) 

B. Observer-Based Output Feedback Control 

The observer-based output feedback controller can be 
expressed as 

  2 2
ˆ ˆ ˆ ˆ,   x Ax B u Ev L y C x u Kx        (34) 

Let    z x e , with ˆe x x  , then the closed-loop system is 

 
2 2 1

2 10 0

A B K B K B E w
z z

A LC B v

      
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     
  (35) 

1) Disturbance attenuation 
If there exist a constant matrices 0S  , W  and a scale 

0k   such that the following inequality is feasible 
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1 1
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T
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where 
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2) Quadratic stabilization 
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 (40) 

The observer gain can be chosen as 

 1L S W  (41) 

IV. SIMULATIONS 

To show the effectiveness of the scheme, simulations are 
carried out as follows. It is assumed the reference path 
covered with dry concrete, the curvature of circular path is 
ρref =1/100m

-1
. The desired speed for traveling is vx=15m/sec. 

The following tire model is employed 

   1.1973 1 25.168 0.5373Res j j jS exp S S    
 

 

for simulating the dry concrete condition, and the related 
initial slope (12) is k=30. The data of the vehicle system is 
given as follows; Caero=0.3743kg/m, m=1480kg, Jz= 
1950kgm

2
, lf=1.421m, lr=1.029m, ld=0.751m, ks=0.9, g= 

9.81m/s
2
. The control inputs are the front-wheel steering 

angles and the desired wheel torques. 
The vehicle control system is assumed to start with the 

following initial state: vx=15m/sec, vy(0)=0m/sec, γ(0)= 

0deg/sec, yc(0)=0.2m, l (0)=0deg. Fig. 2 depicts the result of 

the plane motion of the vehicle under the state feedback 
control algorithm. It can be seen that the vehicle approaches 
the reference path in a slightly swinging manner, and its path 
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eventually overlaps the reference path although there exist 
parameter uncertainties. Fig. 3 illustrates the vehicle states 
with the observer-based output feedback controller. It is 
shown that the states of the controlled system perform 
asymptotically convergent to the ideal states, i.e., the vehicle 
can track the desired curved path. 

 
Figure 2.  Response of vehicle states (state feedback) 

 
Figure 3.  Response of vehicle states (observer-based output feedback) 

V. CONCLUSION 

A path tracking control scheme is presented for 4WS 
vehicles in the presence of uncertainties of modeling 
uncertainties, tire-road conditions, and unexpected 
disturbances. Both the state feedback controller and 
observer-based output feedback controller are designed via 
LMI optimization technique. The main results rely on the 
multi-objective synthesis approach. The proposed solution 
are subject to some conservatism induced by one single 
Lyapunov matrix enforcing all the specifications and the 
special structure of the controller. However, the designed 
controller can provide satisfactory disturbance attenuation 
performance and robustly stabilize the uncertain vehicle 

system. Simulation results are included to validate the 
proposed control scheme. 
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