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Abstract—To improve the detection performance and detection 

speed of wideband spectrum sensing algorithms with little 

priori knowledge, a scheme of cooperative wideband 

compressed blind sensing without reconstruction based on 

higher-order moment (CWCBS-HOM for short) is proposed. 

The test statistic is extracted from third-order moment of the 

compressed samples. The proposed method is blind in the 

sense since it need neither signal reconstruction, nor the prior 

knowledge of the primary user (PU) signal. Theoretical 

analysis and simulation results show that the proposed method 

can enhance the spectrum sensing capability with low 

computational complexity and high speed.  

Keywords-Wideband spectrum sensing; Compressed sensing; 

Higher order moment; Blind sensing 

I. INTRODUCTION 

Spectrum sensing is one of the key technologies in 
cognitive radio (CR) [1] [2] [3]. However, with the 
increasing of communication rate and use of bandwidth, the 
high-speed sampling rate required is difficult to achieve 
under current technology level. The proposition and 
development of compressed sensing (CS), provide a new 
scheme for wideband spectrum sensing with low-speed 
sampling rate [4]. Classical reconstruction algorithms are 
applied to wideband spectrum sensing for single node [5] [6] 
[7], which can recovery signal with sub-Nyquist rate samples. 
To overcome the negative influence of wireless fading, many 
compressed wideband sensing methods in cooperative 
cognitive radio networks have been developed [8][9][10].   

In the above studies, the prior knowledge of signal 
sparsity is assumed known. However, it is usually unknown 
in real scenario. Furthermore, many traditional wideband 
spectrum compressed sensing methods need restructure 
signal or its power spectral density (PSD) precisely, which 
may increase the computational complexity and detection 
time. In fact, the main task of spectrum sensing is not to 
restructure signal but to find spectrum holes. Then, we can 

use the compressed sampling measurements for spectrum 
sensing without signal reconstruction [11] [12].  

In this work, we propose a method of cooperative 

wideband spectrum compressed blind sensing without 

reconstruction based on higher-order moment, hereinafter 

referred to as CWCBS - HOM method. 

The remainder of this paper is organized as follows. In 

Sect. 2, we describe the cognitive radio networks and the 

signal model, and formulate our target problem. The 

CWCBS-HOM method is proposed and discussed in detail 

in Sect. 3. The simulation results and analysis for CWCBS-

HOM are shown in Sect. 4. Finally, the conclusions are 

drawn in Sect. 5. 

II. SYSTEM MODEL AND SIGNAL MODEL 

A. System Model 

As shown in Fig.1, assume the cognitive radio network 
system includes one primary user (PU), one cognitive base 
station (CBS), and L cognitive users (CUs). The PU and the 
CBS are far apart and the CUs are randomly distributed 
within the coverage radius of the CBS. In cooperative 
spectrum sensing, each CU sends its local information to the 
CBS via the common control channels while the CBS makes 
a fusion decision on the presence or absence of the PU signal.  
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Figure 1. Scene model of central cooperative sensing 
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B. Signal Model  

When the lth ( 1, 2, ,l L )CUl is sensing the channel, 

there are two hypotheses: hypothesis 
0H  denotes the PU is 

inactive, and hypothesis 
1H  denotes the PU is active. 

Therefore, the received signal compressed samples under 

the two hypotheses can be described as: 

         0
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( ) ,

l

l

l

H
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where [ (1) (2) ( ) ]T

l l l lw w w Nw  denotes the 

Gaussian noise with zero mean and variance 2

w . Ns R is 

the PU signal as a determined signal. 

[ (1) (2) ( ) ]T

l l l ly y y My is the 1M   dimension 

compressed sample vector received by CUl. Φ  is an 

M N measurement matrix, which must satisfy restricted 

isometry property (RIP) condition [13][14]. We generate 

matrix Φ  by choosing the entries ,i j  as independent 

and identically distributed (i.i.d) sub-Gaussian random 
variables. We require that the distribution yields a matrix that 
is norm-preserving , which requires that 2

,( ) 1i jE M  . 

III. CWCBS-HOM METHOD 

The higher order statistics has different characteristic for 
the Gauss and non-Gauss signal. The essence is a measure of 
the deviation degree of Gauss, which can be used to detect 
the signal. Thus, the CWCBS - HOM method is proposed. 

A. Scheme Framework 

Fig.1 shows the scheme framework of CWCBS-HOM 

method. The CWCBS-HOM method contains two steps: CU 

local compressed sampling step and CBS fusion decision 

step. 

In the first step, the CUl ( 1,2, , )l L samples the 

received signal ( )ly t  based on CS theory and calculate the 

estimated value of third-order moment 3 l
m y  using 

compressed sample vector 
ly ( 1,2, , )l L . The local 

information is sent to the CBS via the common control 
channel. In the second step, the CBS gets the estimated third-

order moment 3m y  of joint observation vector 

1 2[ ]Ly y y y  as test statistic J  by means of the 

statistical averaging method. The joint decision threshold   

can be obtained by statistic characteristic of compressed 
sample vector and fixed false alarm probability (FAP). 
Finally, the decision result u is given out. 

B. Method Description 

Under hypothesis 
0H , there is only Gaussian noise, and 

the third-order moment of 
ly ( 1,2, , )l L  is 

3 3 0
l l

m m 
y w

. Under hypothesis 
1H ,

3 0
l

m 
y

. So, the 

decision rule in theory can be written as follows.  
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However, the formula above is not robust numerically. 
The reason is that we just can use the estimated value instead 
of the real value of HOM in practice.  According to the 
definition of HOM, the estimated third-order moment of 
limited length compression measurements can be expressed 
as 
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Then, we get the test statistic J  by means of the 

statistical averaging method. 
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Combining (3) and (4), we obtain 
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Similarly, the estimated third-order moment of Gaussian 
noise vector w  can be described as 
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Figure 2.  Scheme framework of CWCBS-HOM method 
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Define the variance of 3m y  as 

2 2
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Then, we have 

 2
3 33~ , ( )m N m my yy

             (8) 

Obviously,  

 

 

2
3 0

2
33 1

0, ( ) ,
~

, ( ) ,










N m H
J

N m m H

w

yy

           (9) 

The probability density function (PDF) of test statistic J  

under hypothesis 
0H  can be written as follows. 
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Comparing test statistic J  to joint decision threshold 

 , the decision rule for CWCBS-HOM method can be 

written as follows 
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where   usually can be obtained by fixed FAP 

fP  . 
fP  can be expressed as  

     0 0 0fP P J H P J H P J H        
(12) 

Combining (10) and (12), we have 
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Thus, we have 

1
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where ( )Q   represents Q function, with 1( )Q   as its 

inverse function. Q function is defined as 
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Obviously, the decision threshold   is only associated 

with   and the variance 
2

3( ) m w , but prior knowledge 

of PU signal and Gaussian noise variance 2

w . 

IV. SIMULATION AND ANALYSIS 

Assume the PU signal is a wideband frequency hopping 
signal with hopping rate 300H/s, 10 hopping points, 
frequency range 20MHz~320MHz. To investigate the 
performance of the proposed method under different 
compression ratio M/N and different SNR, We choose SNR 
range [-30dB, 5dB], simulation step 1dB, M/N=1/2, 1/4, 1/8, 
1/16 and 1/32, N=1024, CU number L=10, fixed FAP 

=0.05 .  
Fig.3 shows the detection performance simulation results 

based on 1000 times Monte-Carlo simulation experiments. 
From Fig.3, we can get the following views: 1) With 

compression ratio M/N decreasing, the probability of 
detection reduces synchronously, especially at low SNR. 2) 
When SNR is above -5dB, the probability of detection 
approximately equal 1. In other words, the CWCBS-HOM 
method can detect the PU signal successfully. 
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Figure 3. Probability of detection under different M/N 

As comparison, the other two detection methods are 
simulated here. One is based on Roy’s largest root test 
(RLRT) without reconstruction [15]. The other one is based 
on orthogonal matching pursuit (OMP) reconstruction 
algorithm [16]. The simulation parameters are set as follows: 
N = 1024 , L=10, =0.05 , M/N =1/4 , SNR = -20 dB.   

Fig.4 shows the receiver operating characteristic (ROC) 
curves of the three methods without noise 
uncertainty(method-0dB) and with 1dB noise 
uncertainty(method -1dB). 
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Figure 4. ROC curves of different methods 

As shown in Fig.4, when there is no noise uncertainty, 
the RLRT method is better than OMP method and CWCBS-
HOM method. However, when there is noise fluctuation, 
CWCBS-HOM method is the best one among the three 
methods. Furthermore, CWCBS-HOM method is not 
sensitive to noise fluctuation. The other two methods are 
highly sensitive to the noise disturbance. The reason is that 
RLRT method need precise noise variance to get a relatively 
good detection performance. The OMP method has a large 
error in the reconstruction process because of the fluctuation 
of noise, so the detection performance is obviously decreased. 
In reality, due to the influence of the wireless environment, 
the noise is always fluctuating. Therefore, the proposed 
CWCBS-HOM method is more practical. 

Fig. 5 shows the relationship between the detection time 
and the compression ratio M/N of the above three methods. 
The simulation parameters are set to: N=1024, L=10, 

=0.05 , SNR = -20 dB. 
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Figure 5. Detection time of different methods 

It can be seen that the OMP method has the longest 
detection time. In contrast, the RLRT method and CWCBS-
HOM method have a faster detection speed. The complexity 
of the OMP reconstruction is much higher than that of the 

RLRT method and CWCBS-HOM method without 
reconstruction. 

V. CONCLUSIONS 

In this paper, a method of cooperative broadband 
spectrum compressed blind sensing without reconstruction 
based on higher-order moment is proposed. In the method, 
the CU samples the received signal based on CS theory and 
calculate the estimated value of third-order moment using 
compressed sample vector directly. The CBS makes final 
decision by comparing the test statistic with the joint 
decision threshold. 

  The proposed method is a blind sensing scheme, since 
it does not require apriori knowledge of the PU signal or of 
the noise power. It can overcome the negative effect of low 
SNR and the presence of noise fluctuations. Simulation 
results show that compared with the other two methods, the 
proposed method has the advantages of low computational 
complexity, stable performance and so on. The method is 
suitable for the blind sensing of wideband signals in the 
central cooperative scenario when we have little priori 
knowledge. We will try to promote the proposed method to 
the blind sensing of the wideband random signals under the 
distributed cooperation scenario in the future. 
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