
A Light-weight Multilevel Recoverable Container for Event-driven System: A

Self-healing CPS Approach

Peng Zhou1,2

1School of computer science and technology, Harbin

Institute of Technology

Harbin, Heilongjiang, China.15000
2 LIMOS, UMR 6158 CNRS, Blaise Pascal University

Clermont-Ferrand II

63173, Aubière CEDEX, France.

zhoupeng@ftcl.hit.edu.cn

De-Cheng Zuo

School of computer science and technology, Harbin

Institute of Technology

Harbin, Heilongjiang, China.15000

zdc@ftcl.hit.edu.cn

Kun-Mean Hou

LIMOS, UMR 6158 CNRS, Blaise Pascal University

Clermont-Ferrand II

63173, Aubière CEDEX, France.

kun-mean.hou@isima.fr

Zhan Zhang

School of computer science and technology, Harbin

Institute of Technology,

Harbin, Heilongjiang, China.15000

zz@ftcl.hit.edu.cn

Hong-Ling Shi

School of computer science and technology, Harbin

Institute of Technology,

Harbin, Heilongjiang, China.15000

hongling.shi@isima.fr

Abstract—Cyber Physical Systems (CPS) is regarded as a

new technological revolution, which tightly integrates

computing, communication, and control technologies, to

build a kind of smart networked distributed embedded

control system. CPS is designed to interact autonomously

with the volatile external environment, which implies that the

requirements is constantly changing during run-time. So

guaranteeing the reliability of system becomes extremely

difficult. Flexible self-healing mechanisms are needed

urgently to improve the reliability and availability of CPS.

This paper presents a light-weight container-based

virtualization for event-driven CPS. By providing a unique

run-time stack for each application, the container isolates

faults and limits the effect of failures. Furthermore, a

multilevel fault detection and recovery method is integrated

to protect applications and to limit the fault propagation.

And the analysis shows the container has very low memory

footprint (939 bytes) and constant performance overhead.

Also the testing manifests that the multilevel recovery is high

reliable on WCET violation failure recovery even if the

application is not well designed or malicious.

Keywords-CPS; Container-based virtualization; Self-

Healing reliability; Availability; Fault Detection

I. INTRODUCTION

Cyber Physical Systems (CPS) is a kind of smart
distributed networked embedded control system that
interacts with the physical world. Generally, CPS is large
scale system and deployed in an open, complex and

volatile environment. The requirements of CPS is
constantly changing during run-time, so it’s almost
impossible to test all cases of the whole system before
deployment, which leaves none of measure except self-
healing on run-time. Lots of researchers highlight that the
reliability or dependability is a big issue for CPS
applications [1][5]. However as far as we know, only a few
practical solutions are proposed for tiny systems [5]. The
main reasons are limited resources (such as limited
capacity of MCU, memory, network, etc.), critical
constraints (e.g., power budget, real-time, global reference
time, accuracy of data/decisions, etc.), and the variable
complex environments (e.g., unpredictable emergencies,
the effect of humans, etc.).

IBM describes a concept of autonomic computing
system (ACS), it’s a self-managing system that includes 4-
Self characteristics: Self-configuring, Self-healing, Self-
optimizing, Self-protecting [6]. The Self-healing here
means that a system detects, diagnoses, and recovers
automatically from damage that occurs during its life cycle.
But unfortunately, the complex strategies of self-* increase
the logical complexity which is harmful to system
reliability. In a sense, failure detector/manager is also a
kind of CPS application whose purpose is to guard
common applications rather than physical world. It also
has to face the same problems that common applications
suffer from. To build a reliable CPS, reliable failure
detection and recovery components are needed. Yet, to
guarantee the reliability of such failure management
components, should we build additional components? It

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

439

becomes an endless loop nightmare to engineers. Sha has
made a conclusion that using simplicity to control
complexity is the way to build a reliable system [7]. And
also Jackson highlights the importance of decoupling and
simplicity to system design [8]. So the problem can be
refined to design a simple self-healing methods.

In our opinion, reliability of CPS is not an isolated
issue, it should be taken into account with self-adaptivity
and flexibility together. For CPS, some simple but
universal mechanism of reliability should be devised to
achieve self-healing. Isolation is the basis method to block
fault propagation between components. An ideal solution
to minimize interference between sensors/actuators is
building each sensor and actuator with an isolated
embedded system and sharing as few resources as possible.
But the drawback is that such solution costs too much and
seems unpractical, and the limited bandwidth of wireless
network and energy supply also restrict the potential of
such solution. Virtualization is a practicable technology
with high universality to isolate applications and keep the
flexibility of services [9].

The organization of this paper shows as follow. Section
2 discusses about related work on CPS reliability and
virtualization. Section 3 introduces the model of CPS
application with event-driven mealy Finite State Machine
(FSM) and the difference between the existing container
and our design at the model level, and also the framework
of our container is proposed. Section 4 details the
architecture of our light-weight container, the multilevel
failure detection and recovery mechanism and the
implementation. Section 5 shows the analysis of
performance and reliability, and also testing results are
presented. Finally, a conclusion is made in section 6, and
also the further work is discussed.

II. RELATED WORK

With the development of information and
communication technology, the applications of embedded
system become more and more complex. Compared with
WSN, CPS doesn’t only sense the physical world but also
analysis and interact with it. However, to physical system,
what’s done can't be undone, the physical changes can’t be
revoked, which makes reliability and safety extremely
important in CPS. Redundancy and failure isolation are the
two traditional basic mechanisms to enhance the reliability.
And fault detection, failure prediction, fault diagnose and
recovery are always implemented together. Lots of papers
have analyzed the causes of failures and challenges of
reliability/dependability in CPS [10][13]. Gunes V et al.
make a detail investigation about CPS’s attributes and
requirements, discus dependability and its sub-attribute:
maintainability, availability, safety, reliability one by one,
and also lots of other X-abilities [12], but no solution is
proposed. Lee et al. introduce a PTARM microarchitecture
and a deterministic CPS modeling paradigm called Ptides
[2], [13]. Lee’s research is insightful on correctness, it tries
to improve the reliability by making less mistakes, yet the
research on reliability mechanisms seems feeblish.

A. Reliability solution of CPS

Redundancy is useful to detect faults and to build a
fault-tolerance system. And a lot researches on redundancy
are presented. Such as Kim J et al. build a reliable
architecture with redundant components [3], and Hu Y-L
et al. enhance the system with redundant data [14].
However, redundancy seems less effective for CPS than
general system, because the failure of CPS is caused by the
volatile environment. All the redundant nodes suffer the
same problem and will get the same error result which
means the redundancy mechanism is failed.

What’s more, redundancy costs too high for a small
battery-powered devices. However, it is still a good
practice to apply redundancy on the node level because
CPS always contains massive of redundant sensor nodes
and actuator nodes. J.Valverde introduces a dynamically
adaptable bus architecture called ARTICo [15]. It uses a
reconfigure technology based on Double or Triple HW
Module Redundancy (DMR or TMR).

Improving the reliability with modeling methods or
designing new self-diagnose architecture are other popular
ideas in CPS. Teodora Sanislav proposed an event-driven
multi-agent model to explore the method of quantitative
evaluation [16]. A data-centric runtime monitoring
platform named ARIS is described in Ref.[17]. It detects
abnormal behaviors through data thresholds checking,
patterns matching and machine learning classification. In
Ref.[18], both static and dynamic co-design methods are
explored and evaluated, the authors take both energy and
reliability into account. Sanislav T et al. describe an
ontology-driven environmental monitor to assure system
dependability; Failure Mode and Effects Analysis (FMEA)
is used to quantify the risk level of failure [19]. It is a self-
healing method which is flexible and scalable in theory,
the only fly in the ointment is that no testing result has
been proposed and it sounds that high memory and
performance overhead will be introduced. S.
Krishnamurthy et al. present a Bayesian network approach
to learn, detect and isolate the abnormal behaviors [20]. It
is an ideal (networked) system level solution with self-
learning and self-healing without considering the network
delay and data noise effect which is a main challenge of
CPS.

B. Fault detection and isolation

Fault Detection and Isolation (FDI) has been well
researched. J. Korbicz et al. detailed investigate the fault
detection and isolation methods [21]. Those detection
methods can be classified into 3 types: 1) system
mode/state based, 2) (data) testing based, 3) rule/behavior
based. The isolation methods also can be classified into 4
types based on the level where applied: 1) hardware level,
2) binary level, 3) components level, 4) system/node level.
Wander. A et al. introduce FDI strategies on-board
spacecraft and highlight the challenge of feasibility which
mainly caused by complexity [22].

Time is important resource to CPS because the action
of physical process should be taken at right time and
finished in time. As Lee argued in Ref.[13], computation

Advances in Computer Science Research, volume 44

440

time is closely related to the correctness. And the timing
behavior becomes increasingly uncontrollable with the
increasing complexity of system. Systems get stuck easily
in the open and variable environment, especially without
supervisor. Worst Case Execution Time (WCET) is a
traditional strategies to handle this problem [23]. As a kind
of rule/behavior based detection, it requires little the
internal detail logic of applications which makes it widely
used. There are two main ways lead to the WCET based
detection, heartbeat-based and timer-based. Generally,
heartbeat takes effect by sending heartbeat
signals/packages each other, so it needs at least a pair of
components. Yet, like watchdog, timer-based detector is
designed for single component. It is simpler but should
select the threshold of timer carefully.

C. Virtualization based isolation on embedded system

Host hardware

Host OS

Container

App A

Bins/libs

App B

Bins/libs

Host hardware

Hypervisor

App A +

OSA

App B+

OSB

VM1 VM2Container

Container based VM based
Figure 1. Two kinds of virtualization

Virtualization is a key technology of Cloud Computing.
It can consolidate services, achieve load-balancing, and
manage the power, firewall service and running different
operating systems [24]. From fault isolation aspect,
virtualization is an ideal isolation solution. It is universal
and can provide a unique run-time environment for each
application/subsystem, which can protect normal and
healthy applications from the influence of a failed
application and minimize the risk of system failure.
Currently, there are two kinds of typical virtualization, one
is virtual machine based (VM-based) and another is
container-based. The frameworks of two virtualization are
showed as Figure 1.

Most current researches on embedded system are VM-
based virtualization. Heiser. G introduces two kinds of
approaches, one is bare metal virtualization which is a
typical VM-based technology. And another is hosted
virtualization which needs a host operating system (OS)
and the hypervisors execute on the host OS [24].
Compared with VM-based virtualization, container based
virtualization is lighter. Borko Furht et al. did a detailed
investigation on ARM-based mobile virtualization from
KVM, to VMWare, and from BlackBerry to Android in
book [25]. And a practical and lightweight domain
isolation solution named TrustDroid are introduced which
can achieve good isolation without duplicating any portion
of operating system stack. In Ref.[26], a container based
solution for Android by building a virtual binder IPC layer

is described. It improves memory performance with
service sharing and saves storage with a read-only
filesystem sharing.

Felter et al. tested VM-based virtualization (KVM) and
container based virtualization (Docker) on an IBM R
System x3650 M4 server and Docker won all the
performance competition [9]. The performance of KVM,
Xen (VM-based) and Docker on ARM has been compared
with the results obtained in Ref.[27]. The result shows that
Docker still has the advantage except in file-system
operations. Though Docker is much lighter than VM-based
virtualization, it still too heavy to most of embedded
systems especially to tiny system like AVR-based nodes.
E.g. the size of core Docker source code is more than 30
Mbytes. To our best of knowledge, all of current
virtualization are designed for the general system or for the
high performance embedded platform. These solutions are
too heavy for most of CPS nodes.

III. TIME BOUND BASED CONTAINER MODEL

Event-driven system becomes popular because this
kind of programming model fits the characteristic of CPS
better, it describes the stochastic events in real world
naturally [2], [16]. We use event-driven mealy FSM with
recovery operation to model the application of CPS. We
use Actor to donate the application/service which is
defined as fallow:

0(, , , , (,), ,)Actor S s IN OUT T    (1)

Where  is the input alphabets set and S is the state

set,
0s is the initial state, is the transition function,  is

the operation function, IN and OUT are the input and

output of  ,  is the recovery operation, T is the set
of time bound of (,)Max   . And the transition can be

defined as fallow:

 : [(,)] | (,); i i i j i is in out s t        (2)

The actor switches from one state
is to another state

js when receives an event , and executes operation
i

at the same time. The
it is the WCET of this transition, it

is the maximal time of transition
i and operation

i .

i is the recovery function, it executes only if the transition

violate the WCET constraint.
Actor is the abstraction of the atomic

components/services of a node. Generally, one application
contains several cooperative actors. These actors are
belong to one same group and communicate with each
other through message case. The communication in the
same group is simplified as fallow:

Message

i jActor Actor (3)

Advances in Computer Science Research, volume 44

441

Considering the limited resources of sensors and
actuators, we prefer to apply the container-based
virtualization rather than virtual machine based (VM-
based) virtualization on our AVR-based embedded system.
According the existing container solutions, container is the
basic resource unit with running environment, so that the
container can be executed on any node in the cloud system.
And the unit of scheduling can be denoted with a tuple

, (),(,) >>k k i i i kC Actor t   . Where
kC is the container

that contains a group of Actors. The system has to create a
container instance for each application { }Actor and

schedules at both the container and application level. It
increases the memory footprint and logic complexity.

Embedded Device

Container

Host OS

App B bins

SchedulingRunning

Message buffer
Messages

of App A

Messages

of App B

Act

or 1
Act

or 2

Act

or n

The group of App A

Dispatcher

Host OS

Figure 2. The framework of light weight container-based virtualization

To CPS, most application is location-aware, which
means the meaning of data and the behavior of an
application closely depends on the surrounded
environment where the processing takes. For example,
imaging that the plants in place A is thirsty, but the
actuator transfers the watering process to another actuator
located in B and water the plant in place B. It sounds
ridiculous and the transferring is nonsensical. This
characteristic inspires us that container migration is
unnecessary in CPS and we can build the container as a
packaging function ((),(,))k i i i kC Actor t  . { }Actor are

the parameters of container. In our model, container is still
the basic resource unit but the unit of scheduling is Actor.
And in order to distingue the Actors in different groups
and isolate the relevant resources, we add a field of
group_id for the each Actors, and the communication is

modified as _group idMessage

i jActor Actor , every message

sent should carry a group_id, both
iActor and

jActor

have the same group_id with the message.

The framework of such container illustrated as Figure 2.

The node instants only one container. Every messages

should carry a group_id. The Actor cannot read the

message if it doesn’t share the same group_id. The

scheduler dispatches the applications as normal, just like

the system without container. But the applications should

be executed within the container.

IV. CONTAINER DESIGN AND IMPLEMENTATION

The applications on sensors and actuators share the
hardware resources together with almost none protection.
For example, Contiki OS does not take addition actions on
failure detection and diagnose, the applications on it
should manage all the failures by itself, even though some
failures are in common, which distracts developers from
the normal function design, and also complicates the
system.

In order to run the container on tiny embedded system,
we should simplify the container step further. Generally,
embedded control system is a single-user system, so it’s
unnecessarily to apply user policy and user group policy.
And also the programs on sensors and actuators are
statically linked, which greatly simplifies the container on
the Dynamic Link Libraries (DLL) environment
management. According those premises, a light weight
recoverable container is designed.

A. The architecture of container

To achieve flexibility, the application is decoupled and
made up of several actors. The container-based
virtualization architecture is showed in Figure 2, the
container deploys on Host OS. To host OS, the actor is a
scheduling unit, it can dispatch the applications as before,
so it can minimize the change of application development.
Container generates the run-time environments for actors
especially the run-time stack. To minimize the memory
footprint, all the messages are stored in one same message
buffer and marked with a group_id. Actors should read the
message with a system function. And the function will
prevent to read and write the message carrying a different
group_id.

With this approach, the OS just needs to maintain only
one container instance and one message buffer, which
enables running container with a tiny memory overhead.
And by handing the group_id over to buffer management
function, it simplifies the maintenance of the running time
environment in container.

B. A multilevel failure detection and recovery

Furthermore, we design a multilevel failure detection
and recovery strategy. Firstly, a WCET-based failure
detector is built in the container. At soon as putting an

kActor into the container, the detector starts monitoring

and the timer starts counting. If the actor cannot finish its
action

i within time
it , a timer interrupt will be

triggered. Then the failure counter of
kActor will increase

and the state of actor will be set as failed. To minimize the

influence to other actors, the recovery operation
i is

only taken when system is free. If the recovery failed, the
current instance of

kActor will be given up, and new

instance will be appended to the ready queue. New turn of
scheduling will start. The failure number of recovery will

Advances in Computer Science Research, volume 44

442

be counted, if the failure counter increasing too quickly,
the failure actor will be regarded unreliable and disabled.

Si

failure

Action

Timeout

Si+1

failure counter

Redo

giveup

Failed

Actor

check state

healing

Figure 3. The process of failure detection and recovery

As the recovery function is user-defined, it may also
fail. We use a watchdog to detect the time failure of
recovery and build a multilevel failure detection solution
shown in Figure 4.

WCST detector

Watchdog detector

Process

Recovery

failure rate

guard

Disable Actor

Success

Actor start

Fail

Action

level

Actor

level

System

level

Figure 4. Multilevel failure detection and recovery

On system level, we use a global counter to record
failure of actors. If the counter increases too fast which
means the whole system is ill, a restart operation will be
trigged. For example, Actor A may modify other actors’
memory if the Program Counter (PC) register is error, so
other actors also fail quickly and the whole system
becomes untrusted. Restarting is the only low cost method.

C. The detailed implementation

The container is implemented as a function, and it is
defined by the Figure 5. As soon as the container is
executed, it firstly stores current running environment (the
current field, the registers) with setjmp (env). Secondly, a

timer is started and the recovery operation are initialized.
After that, the action of

kActor is processed. If the action

finished successfully, timer will be stop and all resources
for recovery will be released. For this implementation, the
time threshold is the sum of normal WCET time, the time
to store the current field, the execute time of functions
Daemon_Recover_Init() and Daemon_Stop(). The detail
source can be found in [28].

void Container (pfun_process process,pfun_action

recovery, uint16_t deadline_ms, void* args)

{

 int rev = setjmp (env);

 if(rev>0)

 { //do something if necessary; e.g. disable actors or

release the resource allocated by process()

 return;

 }else{

 Daemon_Recover_Init(deadline_ms,recovery,

&env, rev);

 process(args);

 Daemon_Stop();

}

}

Figure 5. Implementation of container

Figure 6. ISR return address redirecting (ATmega 1281)

And we use timer/counter4 in AVR as the timer for
detection. In order to keep the interrupter function as
simple as possible and don’t block other interrupters, we
take a little Foxy strategy on the return address of ISR by
redirecting the address to the function recovery(), this
function just sets the state of actor to failed and recovers
the stack with the stored current field, the detail recovery
operation of actor is done when system is free. The
running stack and the return address show as Figure 6.

To a system with no supervisor, it’s important to
provide a mechanism to prevent the system from getting
stuck. This container provides an isolated stack for every

Advances in Computer Science Research, volume 44

443

actor, reactivates the system by recovering the stack when
the time bound is missed, and protects the context of other
actors with low cost.

V. PERFORMANCE AND RELIABILITY EVALUATION

A. Overhead and performance analysis

The memory footprint of recoverable container is 939
bytes with 904 bytes of Text and 35 bytes of BSS. The
performance loss is no more than 294 instructions which
costs for function calling of Container, setjmp,
Daemon_Recover_Init, Daemon_Stop, and longjmp. And
the size of protecting field also a MCU related constant
which is 23 bytes for iLive board[29] with ATmega
128RFA1. The time complexity of these functions are

(1) . As the time complexity is constant, the container can

be applied in the real-time system. The memory
complexity is (1) for field protecting (the field data to

protect in setjmp), and as all messages and actors have
group_id, it takes ()n complexity of extra memory.

B. Reliability analysis and testing

To evaluate the reliability recoverable container, here,
we assume that the recovery function preforms as exactly
as designed. As AVR is a modified Harvard architecture,
only SRAM can be rewritten in normal running mode. So
the recovery mechanism will not fail except in these
situations below.

1) The data of field is destroyed
E.g. application has random dangling pointer.
2) PC register is error, recovery is missed or failed
E.g. stack overflow and the return address is error.
The hardware of PC register is error. The probability

that field is destroyed is

1 () / ()P size field size sram (4)

Assume no other resetting operation in system, and the
error value of PC register can be regard as random value.
We can get the probability of restarting before recovery as
fallow

2 * / (Flash) (() ())P WCET size rIP ate CS T T OS   (5)

Where WCET is the worst case execute time, the PC

gets an error as soon as actor starts. IPS is the

instructions per second. Because the reset interrupt is at
the beginning of binary code (for AVR, the addresses are
0x00 to 0x70). ()T C and ()T OS are the time amount

that container and OS take. rate is a percentage

function. * / (Flash)WCET sizeIPS is the possibility that

actor fails and system restarts before WCET violated

(() ())rate T C T OS is the rate that PC pointer gets

error and the code just locates right in area of container
and host OS.

And sum of failure rate of recovery is
1 2sumP P P  .

So the reliability of recovery is 1rev sumR P  ;

We test the recoverable container code on iLive series
board and Arduino Mega2560 board. The MCU includes
AVR ATmega 1280/1281/2560/128RFA1, we design 3
kinds of failures to test the reliability of container. These
failures are shown as follow.

1) WCET Violation
Simulate with endless loop.
2) Random SRAM Modify
Randomly modify the SRAM data with a uint8_t

pointer to simulate the field destroyed failures.
3) Random PC Error

Simulate with a function pointer with random address.
We test recoverable container on iLive node with

more than 2 months. The WCET of all testing is 4
seconds. In the testing case 3, we ignore the part of

(() ())rate T C T OS , as we just inject PC register error

at application level. System restarts when the recovery
mechanism based on timer is failed. And if the system
failed to restart, it means the watchdog detector fails. The
result is shown in Table 1.

TABLE 1 RESULT OF TESTING

Fault injected
Testing

duration

System restart times

Theoretical

value

Record

value

WCET Violation 5281965 secs 0 0

Random SRAM

Modify
About 7 daysa 3628.8 3526

Random PC Error 550368 secs < 34398 59113
a. it failed to restart automatically once

The result in Table 1 shows the recoverable container

is highly reliable on WCET violation recovery, and even
the application has defects or PC register gets transient
fault (in test case 2 and 3), container can isolate the error
and recover without restarting with high probability. The
multilevel recovery mechanism is very effective on
enhancing the availability of system.

The testing record of random PC Error is higher than
theoretical value. The reason includes that 1) we use
watchdog as the second detector which increases the
trigging rate of resetting, 2) system restart in less than 4
seconds (WCET) and more testing is done than expected.
3) PC Error may also destroy the field data. Though the
container is design for software failure detection, the
testing also shows a method using software to protect
application from transient hardware fault with probabilistic
recovery. By the way, PC error rate generally is extreme
low. According the Atmel Reliability Monitor Report [30],
the Failure Rate of the whole MCU is just about 7 FITS in
High Temperature Operating Life testing, which means the
Mean Time to Failure (MTTF) is about 142857142 hours.

VI. CONCLUSIONS AND FUTURE WORK

CPSs suffer the volatile environments which lead to
frequency failures. Isolation is a key method to minimize

Advances in Computer Science Research, volume 44

444

interference between applications and to achieve reliability.
Virtualization shows a practical direction to universal
isolation solution. The multilevel self-healing solution
presented in this paper is a light-weight recovery container
which can be applied on AVR-based CPS nodes. It can
isolate actors with container, protect applications with
group_id. The analysis shows this solution has low
overhead and can be applied in tiny system easily. The
testing with fault injection proves that the multilevel
recovery mechanism has high performance on defending
WCET violation failure. As the time complexity of all
function of container is constant, it can also be possible to
apply the recoverable container in a real-time system.
What’s more, if we implement the failure information
collection in failure state, it can be used to test the errors
with low frequency or the errors that difficult to be
repeated in laboratory environment, which is a problem
that troubles the developers of WSN a lot.

Current work focuses on dynamic executing
environment protection, the failure detection strategy only
supports WCET based detection. As WCET method still
container some drawbacks [31], we will continue the work
on exploring common behavior properties which requires
few details of application logic. And also we will do
research on the I/O virtualization to provide an isolated
operation on network and interaction with physical world.

ACKNOWLEDGMENTS.

This work was supported by a grant from National
High Technology Research and Development Program of
China (863 Program) (No. 2013AA01A205), and National
Natural Science Foundation of China (No. 61370085).

REFERENCES

[1] Petroulakis N. E., Spanoudakis G, et al. A Pattern-Based Approach
for Designing Reliable Cyber-Physical Systems. 2015 IEEE Global
Communications Conference (GLOBECOM), IEEE. 2015

[2] Lee, E. A. The Past, Present and Future of Cyber-Physical Systems:
A Focus on Models. Sensors 15(3): 4837-4869. 2015

[3] Kim J, Puraniket P, et al. Realizing a fault-tolerant embedded
controller on distributed real-time systems. ACM Sigbed Review
10(4): 33-36. 2013

[4] Nageswara S.V Rao. On Undecidability Aspects of Resilient
Computations and Implications to Exascale. Euro-Par 2014:
Parallel Processing Workshops, Springer.2014

[5] Fouquet F, Olivier B, et al. A dynamic component model for cyber
physical systems. Proceedings of the 15th ACM SIGSOFT
symposium on Component Based Software Engineering, ACM.
2012

[6] IBM White Paper. Autonomic Computing Concepts, Available at
http://www-03.ibm.com/autonomic/pdfs/AC Concepts.pdf

[7] Sha, L. Using simplicity to control complexity. IEEE Software.
vol.18(4): 20-28. 2001

[8] D. Jackson. A direct path to dependable software. Communications
of the ACM, vol. 52, No. 4, 2009

[9] Felter W., et al. An updated performance comparison of virtual
machines and linux containers. Performance Analysis of Systems
and Software (ISPASS), 2015 IEEE International Symposium On,
IEEE.2015

[10] Sanislav, T., et al. A new approach towards increasing cyber-
physical systems dependability. Carpathian Control Conference
(ICCC), 2015 16th International, IEEE. 443 – 447, 2015

[11] Leon Wu and Gail Kaiser, "FARE: A Framework for
Benchmarking Reliability of Cyber-Physical Systems", Columbia
University Computer Science Technical Reports, Columbia
University, 2013

[12] Gunes, V., et al. A Survey on Concepts, Applications, and
Challenges in Cyber-Physical Systems. KSII Transactions on
Internet and Information Systems (TIIS) 8(12): 4242-4268. 2014

[13] Lee, E. A. Computing needs time. Communications of the ACM
52(5): 70-79. 2009

[14] Hu Y-L,Su W-B, et al. Dependable Architecture of RFID
Middleware on Networked RFID Systems. Green Computing and
Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, IEEE. 2013

[15] Valverde J, et al. A dynamically adaptable bus architecture for
trading-off among performance, consumption and dependability in
Cyber-Physical Systems. Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, IEEE.
2014

[16] Sanislav T, and L. Miclea. An agent-oriented approach for cyber-
physical system with dependability features. Automation Quality
and Testing Robotics (AQTR), 2012 IEEE International
Conference on, IEEE. 2012

[17] Wu L, and G Kaiser. An autonomic reliability improvement system
for cyber-physical systems. High-Assurance Systems Engineering
(HASE), 2012 IEEE 14th International Symposium on, IEEE.
2012

[18] Lin, M., et al. Scheduling co-design for reliability and energy in
cyber-physical systems. Emerging Topics in Computing, IEEE
Transactions on 1(2): 353-365.2013

[19] Sanislav T., et al. A new approach towards increasing cyber-
physical systems dependability. Carpathian Control Conference
(ICCC), 2015 16th International, IEEE. 2015

[20] S. Krishnamurthy, S. Sarkar, and A. Tewari, Scalable anomaly
detection and isolation in cyber-physical systems using bayesian
networks, in ASME 2014 Dynamic Systems and Control
Conference, 2014

[21] J. Korbicz, J. M. Koscielny, Z. Kowalczuk, and W. Cholewa, Fault
diagnosis: models, artificial intelligence, applications: Springer
Science & Business Media, 2012. pp. 59-113

[22] Wander, A. and R. Förstner. Innovative fault detection, isolation
and recovery strategies on-board spacecraft: State of the art and
research challenges, Deutsche Gesellschaft für Luft-und
Raumfahrt-Lilienthal-Oberth eV. 2013

[23] Wilhelm, R, Jakob E, et al. The worst-case execution-time
problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS) 7(3):
36.2008

[24] Heiser, G. The role of virtualization in embedded systems.
Proceedings of the 1st workshop on Isolation and integration in
embedded systems, ACM.2008

[25] Jaramillo D., et al. Mobile virtualization technologies.
Virtualization Techniques for Mobile Systems, Springer: 5-20.
2014

[26] Xu, L, et al. Condroid: A Container-Based Virtualization Solution
Adapted for Android Devices. Mobile Cloud Computing, Services,
and Engineering (MobileCloud), 2015 3rd IEEE International
Conference on, IEEE. 2015

[27] Raho M., et al. KVM, Xen and Docker: A performance analysis for
ARM based NFV and cloud computing. Information, Electronic
and Electrical Engineering (AIEEE), 2015 IEEE 3rd Workshop on
Advances in, IEEE. 2015

[28] The source code of container and testing is available at:
https://bitbucket.org/Teampp/rc/

Advances in Computer Science Research, volume 44

445

[29] Hong-Ling Shi. Development of an energy efficient,
robust and modular multicore wirelesssensor network.
Université Blaise Pascal - Clermont-Ferrand II, 109-110, 2014.

[30] Atmel, Atmel Reliability Monitor Report. Available at
http://www.atmel.com/Images/Relmtrq4-15.pdf

[31] Abella. J, Hernandez. C, Quiñones, et al. WCET analysis methods:
Pitfalls and challenges on their trustworthiness. 10th IEEE
International Symposium on Industrial Embedded Systems (SIES),
2015, pp 1-10

Advances in Computer Science Research, volume 44

446

