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Abstract—Cyber Physical Systems (CPS) is regarded as a 

new technological revolution, which tightly integrates 

computing, communication, and control technologies, to 

build a kind of smart networked distributed embedded 

control system. CPS is designed to interact autonomously 

with the volatile external environment, which implies that the 

requirements is constantly changing during run-time. So 

guaranteeing the reliability of system becomes extremely 

difficult. Flexible self-healing mechanisms are needed 

urgently to improve the reliability and availability of CPS. 

This paper presents a light-weight container-based 

virtualization for event-driven CPS. By providing a unique 

run-time stack for each application, the container isolates 

faults and limits the effect of failures. Furthermore, a 

multilevel fault detection and recovery method is integrated 

to protect applications and to limit the fault propagation. 

And the analysis shows the container has very low memory 

footprint (939 bytes) and constant performance overhead. 

Also the testing manifests that the multilevel recovery is high 

reliable on WCET violation failure recovery even if the 

application is not well designed or malicious. 

Keywords-CPS; Container-based virtualization; Self-

Healing reliability; Availability; Fault Detection 

I. INTRODUCTION 

Cyber Physical Systems (CPS) is a kind of smart 
distributed networked embedded control system that 
interacts with the physical world. Generally, CPS is large 
scale system and deployed in an open, complex and 

volatile environment. The requirements of CPS is 
constantly changing during run-time, so it’s almost 
impossible to test all cases of the whole system before 
deployment, which leaves none of measure except self-
healing on run-time. Lots of researchers highlight that the 
reliability or dependability is a big issue for CPS 
applications [1][5]. However as far as we know, only a few 
practical solutions are proposed for tiny systems [5]. The 
main reasons are limited resources (such as limited 
capacity of MCU, memory, network, etc.), critical 
constraints (e.g., power budget, real-time, global reference 
time, accuracy of data/decisions, etc.), and the variable 
complex environments (e.g., unpredictable emergencies, 
the effect of humans, etc.).  

IBM describes a concept of autonomic computing 
system (ACS), it’s a self-managing system that includes 4-
Self characteristics: Self-configuring, Self-healing, Self-
optimizing, Self-protecting [6]. The Self-healing here 
means that a system detects, diagnoses, and recovers 
automatically from damage that occurs during its life cycle. 
But unfortunately, the complex strategies of self-* increase 
the logical complexity which is harmful to system 
reliability. In a sense, failure detector/manager is also a 
kind of CPS application whose purpose is to guard 
common applications rather than physical world. It also 
has to face the same problems that common applications 
suffer from. To build a reliable CPS, reliable failure 
detection and recovery components are needed. Yet, to 
guarantee the reliability of such failure management 
components, should we build additional components? It 
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becomes an endless loop nightmare to engineers. Sha has 
made a conclusion that using simplicity to control 
complexity is the way to build a reliable system [7]. And 
also Jackson highlights the importance of decoupling and 
simplicity to system design [8]. So the problem can be 
refined to design a simple self-healing methods. 

In our opinion, reliability of CPS is not an isolated 
issue, it should be taken into account with self-adaptivity 
and flexibility together. For CPS, some simple but 
universal mechanism of reliability should be devised to 
achieve self-healing. Isolation is the basis method to block 
fault propagation between components. An ideal solution 
to minimize interference between sensors/actuators is 
building each sensor and actuator with an isolated 
embedded system and sharing as few resources as possible. 
But the drawback is that such solution costs too much and 
seems unpractical, and the limited bandwidth of wireless 
network and energy supply also restrict the potential of 
such solution. Virtualization is a practicable technology 
with high universality to isolate applications and keep the 
flexibility of services [9].  

The organization of this paper shows as follow. Section 
2 discusses about related work on CPS reliability and 
virtualization. Section 3 introduces the model of CPS 
application with event-driven mealy Finite State Machine 
(FSM) and the difference between the existing container 
and our design at the model level, and also the framework 
of our container is proposed. Section 4 details the 
architecture of our light-weight container, the multilevel 
failure detection and recovery mechanism and the 
implementation. Section 5 shows the analysis of 
performance and reliability, and also testing results are 
presented. Finally, a conclusion is made in section 6, and 
also the further work is discussed. 

II. RELATED WORK 

With the development of information and 
communication technology, the applications of embedded 
system become more and more complex. Compared with 
WSN, CPS doesn’t only sense the physical world but also 
analysis and interact with it. However, to physical system, 
what’s done can't be undone, the physical changes can’t be 
revoked, which makes reliability and safety extremely 
important in CPS. Redundancy and failure isolation are the 
two traditional basic mechanisms to enhance the reliability. 
And fault detection, failure prediction, fault diagnose and 
recovery are always implemented together. Lots of papers 
have analyzed the causes of failures and challenges of 
reliability/dependability in CPS [10][13]. Gunes V et al. 
make a detail investigation about CPS’s attributes and 
requirements, discus dependability and its sub-attribute: 
maintainability, availability, safety, reliability one by one, 
and also lots of other X-abilities [12], but no solution is 
proposed. Lee et al. introduce a PTARM microarchitecture 
and a deterministic CPS modeling paradigm called Ptides 
[2], [13]. Lee’s research is insightful on correctness, it tries 
to improve the reliability by making less mistakes, yet the 
research on reliability mechanisms seems feeblish. 

A. Reliability solution of CPS  

Redundancy is useful to detect faults and to build a 
fault-tolerance system. And a lot researches on redundancy 
are presented. Such as Kim J et al. build a reliable 
architecture with redundant components [3], and Hu Y-L 
et al. enhance the system with redundant data [14]. 
However, redundancy seems less effective for CPS than 
general system, because the failure of CPS is caused by the 
volatile environment. All the redundant nodes suffer the 
same problem and will get the same error result which 
means the redundancy mechanism is failed. 

What’s more, redundancy costs too high for a small 
battery-powered devices. However, it is still a good 
practice to apply redundancy on the node level because 
CPS always contains massive of redundant sensor nodes 
and actuator nodes. J.Valverde introduces a dynamically 
adaptable bus architecture called ARTICo [15]. It uses a 
reconfigure technology based on Double or Triple HW 
Module Redundancy (DMR or TMR). 

Improving the reliability with modeling methods or 
designing new self-diagnose architecture are other popular 
ideas in CPS. Teodora Sanislav proposed an event-driven 
multi-agent model to explore the method of quantitative 
evaluation [16]. A data-centric runtime monitoring 
platform named ARIS is described in Ref.[17]. It detects 
abnormal behaviors through data thresholds checking, 
patterns matching and machine learning classification. In 
Ref.[18], both static and dynamic co-design methods are 
explored and evaluated, the authors take both energy and 
reliability into account. Sanislav T et al. describe an 
ontology-driven environmental monitor to assure system 
dependability; Failure Mode and Effects Analysis (FMEA) 
is used to quantify the risk level of failure [19]. It is a self-
healing method which is flexible and scalable in theory, 
the only fly in the ointment is that no testing result has 
been proposed and it sounds that high memory and 
performance overhead will be introduced. S. 
Krishnamurthy et al. present a Bayesian network approach 
to learn, detect and isolate the abnormal behaviors [20]. It 
is an ideal (networked) system level solution with self-
learning and self-healing without considering the network 
delay and data noise effect which is a main challenge of 
CPS. 

B. Fault detection and isolation 

Fault Detection and Isolation (FDI) has been well 
researched. J. Korbicz et al. detailed investigate the fault 
detection and isolation methods [21]. Those detection 
methods can be classified into 3 types: 1) system 
mode/state based, 2) (data) testing based, 3) rule/behavior 
based. The isolation methods also can be classified into 4 
types based on the level where applied: 1) hardware level, 
2) binary level, 3) components level, 4) system/node level.  
Wander. A et al. introduce FDI strategies on-board 
spacecraft and highlight the challenge of feasibility which 
mainly caused by complexity [22].  

Time is important resource to CPS because the action 
of physical process should be taken at right time and 
finished in time. As Lee argued in Ref.[13], computation 
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time is closely related to the correctness. And the timing 
behavior becomes increasingly uncontrollable with the 
increasing complexity of system. Systems get stuck easily 
in the open and variable environment, especially without 
supervisor. Worst Case Execution Time (WCET) is a 
traditional strategies to handle this problem [23]. As a kind 
of rule/behavior based detection, it requires little the 
internal detail logic of applications which makes it widely 
used. There are two main ways lead to the WCET based 
detection, heartbeat-based and timer-based. Generally, 
heartbeat takes effect by sending heartbeat 
signals/packages each other, so it needs at least a pair of 
components. Yet, like watchdog, timer-based detector is 
designed for single component. It is simpler but should 
select the threshold of timer carefully. 

C. Virtualization based isolation on embedded system 

Host hardware

Host OS

Container

App A

Bins/libs

App B

Bins/libs

Host hardware

Hypervisor

App A + 

OSA

App B+ 

OSB

VM1 VM2Container

Container based VM based  
Figure 1. Two kinds of virtualization 

Virtualization is a key technology of Cloud Computing. 
It can consolidate services, achieve load-balancing, and 
manage the power, firewall service and running different 
operating systems [24]. From fault isolation aspect, 
virtualization is an ideal isolation solution. It is universal 
and can provide a unique run-time environment for each 
application/subsystem, which can protect normal and 
healthy applications from the influence of a failed 
application and minimize the risk of system failure. 
Currently, there are two kinds of typical virtualization, one 
is virtual machine based (VM-based) and another is 
container-based. The frameworks of two virtualization are 
showed as Figure 1. 

Most current researches on embedded system are VM-
based virtualization. Heiser. G introduces two kinds of 
approaches, one is bare metal virtualization which is a 
typical VM-based technology. And another is hosted 
virtualization which needs a host operating system (OS) 
and the hypervisors execute on the host OS [24]. 
Compared with VM-based virtualization, container based 
virtualization is lighter. Borko Furht et al. did a detailed 
investigation on ARM-based mobile virtualization from 
KVM, to VMWare, and from BlackBerry to Android in 
book [25]. And a practical and lightweight domain 
isolation solution named TrustDroid are introduced which 
can achieve good isolation without duplicating any portion 
of operating system stack. In Ref.[26], a container based 
solution for Android by building a virtual binder IPC layer 

is described. It improves memory performance with 
service sharing and saves storage with a read-only 
filesystem sharing. 

Felter et al. tested VM-based virtualization (KVM) and 
container based virtualization (Docker) on an IBM R 
System x3650 M4 server and Docker won all the 
performance competition [9]. The performance of KVM, 
Xen (VM-based) and Docker on ARM has been compared 
with the results obtained in Ref.[27]. The result shows that 
Docker still has the advantage except in file-system 
operations. Though Docker is much lighter than VM-based 
virtualization, it still too heavy to most of embedded 
systems especially to tiny system like AVR-based nodes. 
E.g. the size of core Docker source code is more than 30 
Mbytes. To our best of knowledge, all of current 
virtualization are designed for the general system or for the 
high performance embedded platform. These solutions are 
too heavy for most of CPS nodes.  

III. TIME BOUND BASED CONTAINER MODEL 

Event-driven system becomes popular because this 
kind of programming model fits the characteristic of CPS 
better, it describes the stochastic events in real world 
naturally [2], [16]. We use event-driven mealy FSM with 
recovery operation to model the application of CPS. We 
use Actor to donate the application/service which is 
defined as fallow: 

0( , , , , ( , ), , )Actor S s IN OUT T           (1) 

Where  is the input alphabets set and S is the state 

set, 
0s is the initial state, is the transition function,  is 

the operation function, IN  and OUT  are the input and 

output of  ,   is the recovery operation, T  is the set 
of time bound of ( , )Max   . And the transition can be 

defined as fallow: 

 : [ ( , )]  | ( , ); i i i j i is in out s t          (2) 

The actor switches from one state 
is  to another state 

js  when receives an event , and executes operation 
i  

at the same time. The 
it  is the WCET of this transition, it 

is the maximal time of transition 
i  and operation 

i . 

i is the recovery function, it executes only if the transition 

violate the WCET constraint. 
Actor is the abstraction of the atomic 

components/services of a node. Generally, one application 
contains several cooperative actors. These actors are 
belong to one same group and communicate with each 
other through message case. The communication in the 
same group is simplified as fallow: 

Message

i jActor Actor              (3) 
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Considering the limited resources of sensors and 
actuators, we prefer to apply the container-based 
virtualization rather than virtual machine based (VM-
based) virtualization on our AVR-based embedded system. 
According the existing container solutions, container is the 
basic resource unit with running environment, so that the 
container can be executed on any node in the cloud system. 
And the unit of scheduling can be denoted with a tuple 

, ( ),( , ) >>k k i i i kC Actor t   . Where 
kC  is the container 

that contains a group of Actors. The system has to create a 
container instance for each application { }Actor  and 

schedules at both the container and application level. It 
increases the memory footprint and logic complexity. 

Embedded Device

Container

Host OS

App B bins

SchedulingRunning 

Message buffer
Messages 

of App A

Messages 

of App B 

Act

or 1
Act

or 2

Act

or n

The group of App A 

Dispatcher

Host OS

 

Figure 2. The framework of light weight container-based virtualization 

To CPS, most application is location-aware, which 
means the meaning of data and the behavior of an 
application closely depends on the surrounded 
environment where the processing takes. For example, 
imaging that the plants in place A is thirsty, but the 
actuator transfers the watering process to another actuator 
located in B and water the plant in place B. It sounds 
ridiculous and the transferring is nonsensical. This 
characteristic inspires us that container migration is 
unnecessary in CPS and we can build the container as a 
packaging function ( ( ),( , ) )k i i i kC Actor t  . { }Actor  are 

the parameters of container. In our model, container is still 
the basic resource unit but the unit of scheduling is Actor. 
And in order to distingue the Actors in different groups 
and isolate the relevant resources, we add a field of 
group_id for the each Actors, and the communication is 

modified as _group idMessage

i jActor Actor , every message 

sent should carry a group_id, both 
iActor  and 

jActor  

have the same group_id with the message. 

The framework of such container illustrated as Figure 2. 

The node instants only one container. Every messages 

should carry a group_id. The Actor cannot read the 

message if it doesn’t share the same group_id. The 

scheduler dispatches the applications as normal, just like 

the system without container. But the applications should 

be executed within the container. 

IV. CONTAINER DESIGN AND IMPLEMENTATION 

The applications on sensors and actuators share the 
hardware resources together with almost none protection. 
For example, Contiki OS does not take addition actions on 
failure detection and diagnose, the applications on it 
should manage all the failures by itself, even though some 
failures are in common, which distracts developers from 
the normal function design, and also complicates the 
system.  

In order to run the container on tiny embedded system, 
we should simplify the container step further. Generally, 
embedded control system is a single-user system, so it’s 
unnecessarily to apply user policy and user group policy. 
And also the programs on sensors and actuators are 
statically linked, which greatly simplifies the container on 
the Dynamic Link Libraries (DLL) environment 
management. According those premises, a light weight 
recoverable container is designed. 

A. The architecture of container 

To achieve flexibility, the application is decoupled and 
made up of several actors. The container-based 
virtualization architecture is showed in Figure 2, the 
container deploys on Host OS. To host OS, the actor is a 
scheduling unit, it can dispatch the applications as before, 
so it can minimize the change of application development. 
Container generates the run-time environments for actors 
especially the run-time stack. To minimize the memory 
footprint, all the messages are stored in one same message 
buffer and marked with a group_id. Actors should read the 
message with a system function. And the function will 
prevent to read and write the message carrying a different 
group_id. 

With this approach, the OS just needs to maintain only 
one container instance and one message buffer, which 
enables running container with a tiny memory overhead. 
And by handing the group_id over to buffer management 
function, it simplifies the maintenance of the running time 
environment in container.  

B. A multilevel failure detection and recovery 

Furthermore, we design a multilevel failure detection 
and recovery strategy. Firstly, a WCET-based failure 
detector is built in the container. At soon as putting an 

kActor  into the container, the detector starts monitoring 

and the timer starts counting. If the actor cannot finish its 
action 

i  within time 
it , a timer interrupt will be 

triggered. Then the failure counter of 
kActor  will increase 

and the state of actor will be set as failed. To minimize the 

influence to other actors, the recovery operation 
i  is 

only taken when system is free. If the recovery failed, the 
current instance of 

kActor  will be given up, and new 

instance will be appended to the ready queue. New turn of 
scheduling will start. The failure number of recovery will 
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be counted, if the failure counter increasing too quickly, 
the failure actor will be regarded unreliable and disabled.   

Si

failure

Action

Timeout

Si+1

failure counter

Redo

giveup

Failed

Actor

check state

healing

 

Figure 3. The process of failure detection and recovery 

As the recovery function is user-defined, it may also 
fail. We use a watchdog to detect the time failure of 
recovery and build a multilevel failure detection solution 
shown in Figure 4. 

WCST detector

Watchdog detector

Process

Recovery

failure rate 

guard

Disable Actor

Success

Actor start

Fail

Action 

level

Actor 

level

System 

level

 

Figure 4. Multilevel failure detection and recovery 

On system level, we use a global counter to record 
failure of actors. If the counter increases too fast which 
means the whole system is ill, a restart operation will be 
trigged. For example, Actor A may modify other actors’ 
memory if the Program Counter (PC) register is error, so 
other actors also fail quickly and the whole system 
becomes untrusted. Restarting is the only low cost method. 

C. The detailed implementation 

The container is implemented as a function, and it is 
defined by the Figure 5. As soon as the container is 
executed, it firstly stores current running environment (the 
current field, the registers) with setjmp (env). Secondly, a 

timer is started and the recovery operation are initialized. 
After that, the action of 

kActor  is processed. If the action 

finished successfully, timer will be stop and all resources 
for recovery will be released. For this implementation, the 
time threshold is the sum of normal WCET time, the time 
to store the current field, the execute time of functions 
Daemon_Recover_Init() and Daemon_Stop(). The detail 
source can be found in [28]. 

 

void Container (pfun_process process,pfun_action 

recovery, uint16_t deadline_ms, void* args) 

{ 

 int rev = setjmp (env); 

 if(rev>0) 

 { //do something if necessary; e.g. disable actors or 

release the resource allocated by process() 

    return; 

 }else{ 

    Daemon_Recover_Init(deadline_ms,recovery, 

&env, rev); 

    process(args); 

    Daemon_Stop(); 

} 

} 

Figure 5. Implementation of container 

 

Figure 6. ISR return address redirecting (ATmega 1281) 

And we use timer/counter4 in AVR as the timer for 
detection. In order to keep the interrupter function as 
simple as possible and don’t block other interrupters, we 
take a little Foxy strategy on the return address of ISR by 
redirecting the address to the function recovery(), this 
function just sets the state of actor to failed and recovers 
the stack with the stored current field, the detail recovery 
operation of actor is done when system is free. The 
running stack and the return address show as Figure 6. 

To a system with no supervisor, it’s important to 
provide a mechanism to prevent the system from getting 
stuck. This container provides an isolated stack for every 

Advances in Computer Science Research, volume 44

443



actor, reactivates the system by recovering the stack when 
the time bound is missed, and protects the context of other 
actors with low cost. 

V. PERFORMANCE AND RELIABILITY EVALUATION 

A. Overhead and performance analysis 

The memory footprint of recoverable container is 939 
bytes with 904 bytes of Text and 35 bytes of BSS. The 
performance loss is no more than 294 instructions which 
costs for function calling of Container, setjmp, 
Daemon_Recover_Init, Daemon_Stop, and longjmp. And 
the size of protecting field also a MCU related constant 
which is 23 bytes for iLive board[29] with ATmega 
128RFA1. The time complexity of these functions are 

(1) . As the time complexity is constant, the container can 

be applied in the real-time system. The memory 
complexity is (1)  for field protecting (the field data to 

protect in setjmp), and as all messages and actors have 
group_id, it takes ( )n  complexity of extra memory.  

B. Reliability analysis and testing 

To evaluate the reliability recoverable container, here, 
we assume that the recovery function preforms as exactly 
as designed. As AVR is a modified Harvard architecture, 
only SRAM can be rewritten in normal running mode. So 
the recovery mechanism will not fail except in these 
situations below. 

1) The data of field is destroyed 
E.g. application has random dangling pointer. 
2) PC register is error, recovery is missed or failed 
E.g. stack overflow and the return address is error.  
The hardware of PC register is error. The probability 

that field is destroyed is 

1 ( ) / ( )P size field size sram            (4) 

Assume no other resetting operation in system, and the 
error value of PC register can be regard as random value. 
We can get the probability of restarting before recovery as 
fallow  

2 * / (Flash) ( ( ) ( ))P WCET size rIP ate CS T T OS    (5) 

Where WCET  is the worst case execute time, the PC 

gets an error as soon as actor starts. IPS is the 

instructions per second. Because the reset interrupt is at 
the beginning of binary code (for AVR, the addresses are 
0x00 to 0x70). ( )T C  and ( )T OS  are the time amount 

that container and OS take. rate  is a percentage 

function. * / (Flash)WCET sizeIPS is the possibility that 

actor fails and system restarts before WCET  violated 

( ( ) ( ))rate T C T OS is the rate that PC pointer gets 

error and the code just locates right in area of container 
and host OS. 

And sum of failure rate of recovery is
1 2sumP P P  . 

So the reliability of recovery is 1rev sumR P  ; 

We test the recoverable container code on iLive series 
board and Arduino Mega2560 board. The MCU includes 
AVR ATmega 1280/1281/2560/128RFA1, we design 3 
kinds of failures to test the reliability of container. These 
failures are shown as follow. 

1) WCET Violation 
Simulate with endless loop. 
2) Random SRAM Modify  
Randomly modify the SRAM data with a uint8_t 

pointer to simulate the field destroyed failures.  
3) Random PC Error 

Simulate with a function pointer with random address. 
We test recoverable container on iLive node with 

more than 2 months. The WCET of all testing is 4 
seconds. In the testing case 3, we ignore the part of 

( ( ) ( ))rate T C T OS , as we just inject PC register error 

at application level. System restarts when the recovery 
mechanism based on timer is failed. And if the system 
failed to restart, it means the watchdog detector fails. The 
result is shown in Table 1.  

TABLE 1 RESULT OF TESTING 

Fault injected 
Testing 

duration  

System restart times 

Theoretical 

value 

Record 

value 

WCET Violation 5281965 secs  0 0 

Random SRAM 

Modify  
About 7 daysa 3628.8  3526 

Random PC Error 550368 secs < 34398  59113 
a. it failed to restart automatically once 

 
The result in Table 1 shows the recoverable container 

is highly reliable on WCET violation recovery, and even 
the application has defects or PC register gets transient 
fault (in test case 2 and 3), container can isolate the error 
and recover without restarting with high probability. The 
multilevel recovery mechanism is very effective on 
enhancing the availability of system. 

The testing record of random PC Error is higher than 
theoretical value. The reason includes that 1) we use 
watchdog as the second detector which increases the 
trigging rate of resetting, 2) system restart in less than 4 
seconds (WCET) and more testing is done than expected. 
3) PC Error may also destroy the field data. Though the 
container is design for software failure detection, the 
testing also shows a method using software to protect 
application from transient hardware fault with probabilistic 
recovery. By the way, PC error rate generally is extreme 
low. According the Atmel Reliability Monitor Report [30], 
the Failure Rate of the whole MCU is just about 7 FITS in 
High Temperature Operating Life testing, which means the 
Mean Time to Failure (MTTF) is about 142857142 hours.  

VI. CONCLUSIONS AND FUTURE WORK 

CPSs suffer the volatile environments which lead to 
frequency failures. Isolation is a key method to minimize 
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interference between applications and to achieve reliability. 
Virtualization shows a practical direction to universal 
isolation solution. The multilevel self-healing solution 
presented in this paper is a light-weight recovery container 
which can be applied on AVR-based CPS nodes. It can 
isolate actors with container, protect applications with 
group_id. The analysis shows this solution has low 
overhead and can be applied in tiny system easily. The 
testing with fault injection proves that the multilevel 
recovery mechanism has high performance on defending 
WCET violation failure. As the time complexity of all 
function of container is constant, it can also be possible to 
apply the recoverable container in a real-time system. 
What’s more, if we implement the failure information 
collection in failure state, it can be used to test the errors 
with low frequency or the errors that difficult to be 
repeated in laboratory environment, which is a problem 
that troubles the developers of WSN a lot.  

Current work focuses on dynamic executing 
environment protection, the failure detection strategy only 
supports WCET based detection. As WCET method still 
container some drawbacks [31], we will continue the work 
on exploring common behavior properties which requires 
few details of application logic. And also we will do 
research on the I/O virtualization to provide an isolated 
operation on network and interaction with physical world.  
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