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Abstract—The necessary observation space to achieve the 

lowest geometric dilution of precision (GDOP) based 

absolute-range measurement in two-dimension (2-D) 

wireless location systems is researched. Angle of coverage 

(AOC) is introduced as a parameter to describe the 

observation space. In fact, AOC reflects the geometric 

relationship between the target and the measuring points. A 

new clever geometric relationship between a target and N 

measuring points is proposed in this paper. And then, this 

geometric relationship is proved to have the minimum AOC 

to achieve the lowest GDOP in 2-D wireless location systems. 

It is shown that when the AOC is less than the minimum 

AOC, the lowest GDOP of 2 / N could not be obtained. 

So the minimum AOC is called the necessary AOC. The 

necessary AOC is equal to / 2  when N is even, while the 

necessary AOC is monotonically decreasing to / 2  when 

N is odd. When the AOC is less than the necessary AOC, the 

optimal geometry is derived as well as its new low bound of 

GDOP.  

Keywords-Angle of coverage; the lowest GDOP; 2-D 

location system; absolute-range; wireless location systems 

I. INTRODUCTION 

Recently, diverse wireless location systems have been 
applied [1] [2]. The target and several measuring points are 
always on a plane in these wireless location systems. With 
the use of absolute-range measurement, the absolute 
distance between the target and measuring points can be 
calculated based on round-trip delay. Since the absolute-
range measurement does not need to solve the 
synchronization problem, it has been widespread concern. 

The measurement accuracy of ranging signal and the 
geometry between the target and several measuring points 
determine the positioning accuracy of the system [3] [4]. 
GDOP quantitatively describes the influence of the 
geometry on the positioning accuracy. Due to lower 

GDOP often means higher measurement accuracy, all 
wireless location systems are searching lower GDOP. 

It is shown that the lowest GDOP of 2 / N can be 

achieved when the measuring points are located at the 
vertices of a regular polygon and the target at the center of 
the polygon in 2-D wireless location systems [4]. However, 
the kind of geometric relationship is idealistic, even under 
many practical conditions, such geometric relationship is 
not available. 

Angle of coverage (AOC) is introduced to describe the 
geometry between the target and several measuring points 
in limited space. It is the central angle of the sector 
covering all the measuring points, where the target is 

placed at the center. When the AOC is less than / 2 , 

the lowest GDOP of 2 / N  is proved to be 

unreachable. And when AOC is equal to / 2 , a kind of 

geometry could achieve the lowest GDOP, where N is 
even. But when N is odd, the corresponding question has 
not been solved. In this paper, we not only propose a kind 
of geometry between the target and N measuring points to 
achieve the lowest GDOP, but also prove the necessary 
AOC realizing the lowest GDOP. On this foundation, the 
optimal geometry is derived as well as its new bound of 
GDOP, when the AOC is less than the necessary AOC. 

The remainder of the paper is organized as follows. 
After a brief description of the GDOP and AOC in Section 
II, the necessary AOC to achieve the lowest GDOP is 
studied in section III. Furthermore, the optimal geometry 
of measuring points is derived when the AOC is less than 
the necessary AOC. The results of this paper are useful to 
design highly accurate wireless location systems, 
especially in the situation when the AOC is less than the 
necessary AOC. 

II. THE DESCRIPTION OF THE GDOP 

Consider an absolute-range-based 2-D wireless 
location system. It consists of a single stationary target 
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located at 
T

ttt yxP ],[ and a set of 

N )3( N measuring points placed at locations 

[ , ] ,  1,2,..., .T

i i iP x y i N  The i-th measuring point is 

a distanced id away from the target, where 

2 2( ) ( )i i t i td x x y y    . Here the GDOP is as 

follow [4]: 

1 1

1,1 2,2[( ) ] [( ) ]T TGDOP H H H H       (1) 

Where 
1

,[( ) ]T

i iH H 
denotes the (i,i)–th element of the 

matrix 
1( )TH H 

. 

As shown in [4], there are two different expressions for 
the H in (1): one is for the absolute-range measurement, 
and the other for the pseudo-range measurement. Here the 
absolute-range measurement is considered. Therefore, the 
H in (1) is as follow [4]: 
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As shown in Fig.1, 1( 1,2,... )i N  is the angle of 

the ray from the target to the i-th measuring point relative 

to the positive x-axis. Note that 
j i   when j i  

, {1,2,... }i j N   

Here the AOC is denoted by a variable  . Without 

loss of generality, let 1 0   and the signal emitted from 

the target covers a sector from 0 to  . Therefore, the 

 and i ( 1,2,..., )i N satisfy the following relation: 

1 20 ... N        . The AOC and the 

geometry between the target and measuring points are 
shown in Fig.1. 

The absolute-range measurement is usually 
implemented by a round-trip delay measurement. Recently, 
the absolute-range measurement has been widely used in 
range-based wireless location systems as it does not need 
consideration of the   synchronization between the target 
and measuring points [5] [6]. 

Substituting (2) into (1), we have 

2

1

2

1

2 )2sin()2cos(/[4 



N

i

i

N

i

iNNGDOP   (3) 

III. THE NECESSARY AOC AND THE OPTIMAL 

GEOMETRY  

A. The Necessary AOC 

Proposition 1. For any geometry between the target and 
the measuring points, the GDOP in (3) is low bounded 

by 2 / N , where N is the number of the measuring 

points [7]. 

Proof. For any ( 1,2,... )i i N  , it is held that 

 
Figure 1. Angle of coverage of the geometry between the target and N measuring points.
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2 2

1 1

( cos 2 ) ( sin 2 ) 0
N N

i i

i i

  
 

        (4) 

Using (3) and (4), we have 2 /GDOP N . The 

lowest GDOP of  2 / N is achieved when the equality 

is achieved in (4). Note that the equality in (4) can be 
achieved, e.g., for 

1 2 / , 1,2,... 1.i i N i N        

Proposition 2. The necessary AOC is / 2  when N 

is even. 

Proof: Let 0,i  /2 / 2i N   , 

1,2,3,..., / 2i N . 

Substituting the i , 1,2,3,...,i N into (3), we find 

the GDOP achieve its minimum value 2 / N . We 

know the necessary AOC ( ) / 2N  from 

proposition 2. So the necessary AOC is / 2  when N is 

even. 
Proposition 3. The necessary AOC is 

1
arcsin

2 1N





 when N is odd. 

Proof: Based on the optimization theory, the geometry 

that 321
2

1
,,

2

1


 NN
 possesses the minimum 

AOC to achieve the lowest GDOP when N is odd. We put 

1 2 1

2

... ,N        
3 5

2 2

...N N N       into 

equation (3), then we could get:  

1

1
arcsin( )

2 1
N

N


   


        (5) 

Combined with proposition 2 and proposition 3, we 
can get the necessary AOC realizing the lowest GDOP: 

/ 2                            2
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/ 2 arcsin( )   2 1 

1
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(6) 

B. The optimal sensor placement in limited observation 

space, where AOC is less than the necessary AOC 

We make 

24 / ( )GDOP N N           (7) 

Where 2 2

1 1

( cos 2 ) ( sin 2 )
N N

i i

i i

  
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      (8)                          

When N is even 
All the possible geometries between the target and 

measuring points can be described by 

( 1,2,... ),i i N  which satisfy that 

1 20 ... .N         Accord to the 

optimization theory, the optimal geometries at most have 
one angle that is not equal to the boundary. We assume the 
first m angles are equal to 0 and only the last n angles are 

equal to  . The special angle (0 )i i    , where 

1m n N   .Then we have  

2 2

2 2

( cos 2 cos 2 ) (sin 2 sin 2 )

1 1
( cos 2 cos 2 ) (sin 2 sin 2 )

2 2

2( 1)cos cos( 2 )

i i

i i

i

m n n

N N
n
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    
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(9) 

Where 

2( 1)
1 cos 2

2

N
K 


  . It’s easy to get: when 

0 / 2   and m n , ( )i  is a monotone 

decreasing function, which means we can have a lower 

GDOP by enlarging i  up to  [8]. 

Similarly, ( )i  is a monotone increasing function 

when m n , which means we can have a lower GDOP 

by reducing i  down to 0. 

The results show that when the observation space is 

less than / 2 , the lowest GDOP will be achieved at 

0      i=1,2,..., / 2

     i= / 2 1, / 2 2,...,
i

N

N N N




    
 

        

 (10) 

Where x   denotes the largest integer not greater than 

x . 

The result show than all measuring points are place on 
both sides of the sector when the observation space is less 

than / 2 . 

When N is even, the necessary observation is / 2 . 

According the above result, we have the optimal geometry 
and the corresponding GDOP , where the observation is 
limited. 

8 / [ *(1 cos2  )]GDOP N           (11) 

When N is odd 
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Case 1, where / 2   

The necessary observation ( ) / 2N  . Here we 

get the optimal geometry from the equation (9), where the 

observation space / 2  , and the corresponding 

GDOP is: 

28 / [( 1)*(1 cos2 )]GDOP N N       (12) 

 
Figure 2. The optimal geometry in case 1. 

Case 2, where / 2 ( )N    ,  

2 2

2 2

( cos 2 cos 2 ) (sin 2 sin 2 )

1 1
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2 2

i i
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2( 1)cos cos( 2 )iGDOP N K         (13) 

Where 

2( 1)
1 cos 2

2

N
K 


  . Obviously, K is a 

constant. 
It’s obvious that the   achieve the maximum value 

when / 2i  . The GDOP is 

24 / [( 1)(1 cos2 / 2) 2( 1)cos ]GDOP N N N      (14) 

 

 
Figure 3. The optimal geometry in case 2.
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Case 3, when / 2  , 

The optimal geometry is not only one. Let 0i  , 

( 1)/2i N    , 1,2,...( 1) / 2i N  , and 

( 1)/2N   [0, ] . Then we have the corresponding 

GDOP: 

28 / [( 1)*(1 cos2 )]GDOP N N       (15) 

 
Figure 4. The optimal geometry in case 3. 

In case 3, the low bound of GDOP is independent of 

the value of 
( 1)/2N 

. In fact, such characteristic realizes 

smooth transition between case 1 and case 2. 

IV. RESULTS 

The necessary AOC to achieve the lowest GDOP has 
been present. It is shown that the necessary AOC is the 
function of N, where N is the number of the measuring 

points. The necessary AOC is equal to / 2  when N is 

even, while the necessary AOC is monotonically 

decreasing to / 2  when N is odd. Obviously, / 2  is 

the low bound of the necessary AOC. Then the optimal 
geometry of measuring points is derived as well as the new 
low bound of GDOP, when the AOC is less than the 
necessary AOC. The results of this paper are useful to 
design highly accurate wireless location systems, 
especially in the situation when the AOC is less than the 
necessary AOC, such as indoor positioning and special 
terrain positioning. 
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