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Abstract—In this paper,we propose two discrete 

particle swarm optimization algorithms to solve a 

prize-collecting call control problem on lines based on 

the classical particle swarm optimization algorithm. 

The two algorithms combine simulated annealing and 

genetical methods with particle swarm optimization 

respectively. Then, we do lots of experiments to 

compare the two discrete particle swarm optimization 

algorithms we addressed, in which we compare the 

results and iteration time and the convergence of two 

algorithms under some given variables. Finally, 

computational results show that the proposed discrete 

particle swarm optimization with genetic algorithm is 

very efficient and can be quickly obtained good 

results.   

Keywords-DPSO algorithm; prize-collecting; call 

control; lines  

I. INTRODUCTION 

In recent years, much attention has been paid to the 
unsplittable flow problem (UFP). Simply summarized the 
definition of this problem: given an undirected graph 
where each edge has its capacity and a set of vertex pairs 
with a positive demand and a positive profit. The goal is to 
find a subset with the maximum profit form the given set 
so that each chosen pair from the subset can satisfy its full 
demand without exceeding its capacity. 

Bansal et al. [1] considered the UFP on a line, they 
simply introduced that the UFP is NP-hard. To solve this 
problem, they added dynamic programming into linear 

programming relaxation to avoid a  n integrality gap 

generated by linear programming. They presented the first 
polynomial time (log )O n approximation algorithm for the 

problem without any assumptions, which broke the 
previous conclusion that is no polynomial time ( )O n

approximation algorithm was known in the past. 

Bonsma et al. [2] studied the UFP on a path, they 
presented a constant-factor (7+  ) approximation 

algorithm for this problem, which improved on the 
previous ratio of (log )O n . They also showed a 2+ 
-approximation algorithm with slightly violated the 
capacities, then they proved that this problem is strongly 
NP-hard. Based on their results, another group gave a new 
improvement. Anagnostopoulos et al. [3] implied a 2+  

approximation for the same problem without violating any 
capacities, which was better than the 7+  ratio for any 

constant  > 0. Batra et al. [4] studied the same problem, 

they obtained a PTAS when the the ratio of a task’s profit 
and demand lie in a constant range. They also obtained a 
PTAS, in which they were allowed to shorten the paths of 
the tasks. 

UFP was widely used in various fields, for which 
studies did a lot of researches about its actual problems, 
such as the problem of resource allocation. Bar-Noy et 
al.[5] presented approximation algorithms for solving 
resource allocation and scheduling problems, which 
factors applied to many problems such as dynamic storage 
allocation and so on. Li.et al. [7] considered another 
problem about UFP, which is the ring loading problem 
with penalty cost. In that paper, they showed a 
1.58-approximation algorithm for the demand unsplittable 
case. Later, motivated by the research of prize-collecting 
Steiner tree problem [8], Li. et al. [6] introduced the 
prize-collecting call control (PCCC) problem on lines, for 
which they designed a 1.58-approximation algorithm using 
a randomized rounding technique. 

In our paper, we do a research about (PCCC) problem 
on lines proposed by Li. et al. [6], which is prize-collecting 
call control problem on lines, the description of this 

problem is as follows. Given an line ( , )G V E  and a 

set of K  pairs of vertexes , 
in which each pair of vertexes is representative as a request 

path. Each request path kP  has a positive demand kd  
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and a positive penalty cost kp . The objective of PCCC 

problem is to find a subset from  so that the sum 

of the total demand  and the total penalty cost 

 is minimum. The integer linear program 
(ILP) of this problem is as follows: 

 

in which for each , kP  is either accepted if 1kx   

or rejected once 0kx   and L  is the maximum load of 

accepted paths, f  is simply represent as the objective 

function. Li. et al. [6] proved that the PCCC problem on 
lines is NP-hard. 

To solve above problem, we propose two algorithms 
based on classical particle swarm algorithm. Kennedy and 
Eberhart [9] proposed particle swarm optimization 
algorithm in 1995, which is intended to gain a global 
optimal value. The principles of PSO algorithm can be 
described as follows [9]. It is assumed that the search 

space is n -dimension and population size is M , in which 

the position and velocity of particle i in the t th iteration 

is defined by  1 2, , ,t t t t

i i i inX x x x L  and 

 1 2, , ,t t t t

i i i inV v v v L  where 1,2, ,i M L . The flying 

speed and position of particle i  in the j th 

 1,2, ,j n L  subspace of the t th iteration are 

calculated according to: 

   1

1 1 2 2

t t t t t t

ij ij ij ij j ijv wv c r p x c r g x            (1) 

1 1t t t

ij ij ijx x v                 (2) 

 
where w , called weight, is a constant to control the 

impact of the previous velocities on the current velocity.
1c

and 2c are acceleration factors, which can impact the 

moving trail of particles, 1r and 2r are uniformly distributed 

random variables in [0,1],
jg  can be representative as the 

best history position in the whole population,
ijp  is the 

best history position of the current particle. 

II. THE ALGORITHM OF DPSO 

Due to the continuous character of PSO, Kashan et al. 
[10] proposed a discrete particle swarm optimization 
algorithm for scheduling parallel machines. We use this 

algorithm methods efficiently to propose two DPSO 
algorithms and then solve the PCCC problem with them.  

A. The Proposed DPSO-GA Algorithm 

We set k  numbers of dimensions are presented each 

for one of k  request calls, hence, a solution for the 

problem is represented by an array whose length is equal 

to the number of non-zero elements of k −dimention 

array. The location of a particle in the i th dimension 

represents the i th path to be accepted or rejected, in 

which the i th path is accepted if the i th value is 1, or 

rejected if the if the i th value is 0. We draw lessons from 

Kashan et al. [10] and propose a DPSO algorithm with the 
basis on GA method to solve the PCCC problem on lines, 
which is called DPSO-GA. 

The process of generating a new position for selecting 
an optimal solution in the given particle swarm is depicted 
as follows [10]: 

       (3) 

               (4) 

where 
1R  and 

2R  are 1-by- k  arrays compromising 0 

or 1 elements. These random arrays are generated from a 
Bernoulli distribution in which the probability of getting 1 

is equal to 0.5. t

iV  and t

iX  are the i th particle current 

velocity and position arrays, respectively.
t

iP  and 
t

gP  are 

the i th particle best position and the global best position 

in history. The subtraction operator  and the 

multiply operator    used by Kashan et al. [10] in 

equation (3) and (4) are also our operators. The add 

operator    is a crossover operator that method is 

typically used in genetic algorithms, which method is the 
only different point with Kashan et al. [10]. First, it 
randomly generates two cross points from particle chain A. 
Next, it exchanges the sub-chain between the two points 
and two new chains obtained. Then, we select one of the 
new chains randomly to be the result of the add operator. 

B. The Proposed DPSO-SA Algorithm 

Simulated Annealing (SA) is a random-search 
technique proposed by Metropolis [11], whose major 
advantage is an ability of suddenly jumping with 
probability to avoid becoming trapped in local minima. So, 
we can add the SA into DPSO algorithm to solve the 
PCCC problem on lines efficiently, called DPSO-SA 
algorithm, it continues the updating equation (3) and (4).  
Before the updating of the position and the velocity vector, 

given an initial temperature 0T , we compute the 

temperature iT by    / (0)t t
i gf p f p T

e
 

 [11] , the algorithm 
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repeats the updating operator until reaching the 

temperature balance iT [11]. More important, the 

simulated annealing operator is 
1i iT CT   where 

 0,1C until satisfying the convergence conditions. 

DPSO-SA pseudo code. 
Begin 

  for i: 1 to swarm size 

    X(i,:): generate a particle at 

random; 

    V(i,:): generate a particle at 

random; 

    P(i,:)=X(i,:); 

  end for 

  Pg=X(1,:); 

  for i:2 to swarm size 

    find the X(j,:) which satisfies the 

min(f); 

  end for 

    Pg=X(j,:); 

  given a initial temperature T(0); 

  t=1; 

    for i:1 to swarm size 

    

T(i)=exp(-(f(P(i,:))-f(Pg))/T(0)); 

    end for 

  generating new solution X', obtaining 

the value: 

  f(X')-f(X); 

  if 

min{1,exp(-(f(X')-f(X))/T(i))}>random

[0,1] 

    accepting the solution X'; 

  else 

    break; 

  end if 

  for i:1 to swarm size 

    V(i,:):update the i-th particle 

velocity vector by (3); 

    X(i,:):update the i-th particle 

position vector by (4); 

    if min{f(X(i,:))}<min{f(P(i,:))} 

      P(i,:)=X(i,:); 

    else 

      P(i,:)=P(i,:); 

    end if 

  end for 

  if min{f(Pg)}>min{f(P(i,:))} 

    Pg=P(i,:); 

  end if 

  T(0)=T(0)*C; 

  t=t+1; 

End  

III. COMPUTATIONAL EXPERIMENTS 

The two DPSO algorithms we proposed are better or 
not to solve effectively the PCCC problem on lines, we do 
lots of experiments to prove it. We will give 100 particles 
to each algorithm and let the two programs run 100 times 
for each experiment in MATLAB to reach results, and use 
the finial result and the total running time to compare what 
we want to. In all following tables, we let “result” and 
“time” be representatives.  

A. Experiments of DPSO-SA 

Due to the optimal value obtained by SA is different 
when its parameters changed a little, we do some 
experiments to obtain the best parameters. An 
experimental frame-works, namely E1, is considered each 
of them having two influence factors: the initial 

temperature 0T  and the annealing function 1i iT CT  . 

Theoretically, the annealing velocity is no more quicker 

than  0 / 1 ln( )iT T i  , in other words, iT  is 

diminishing once 2i  , so we design C  is an alterable 

constant in  0,1 . In order to obtain the best result, 

insuring the initial temperature big enough is of great 
importance, then we decide that the initial temperature is 
similar to the function value of initial global best position 

 gf p , that is to say let 0T  be the relative to the 

 gf p , for which we definite  0 gT rf p  where r  

is a changeable constant. 

TABLE 1.  FRAMEWORK E1 

      K    kd       kp           r               C  

E1   100  [1,3]U   [1,5]U   0.5,0.7,1.0,1.2,1.5   0.2, 0.4,0.5, 0.7,0.9 
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We can see the experimental results about DPSO-SA 

with 100K   in Table2. Clearly, when the value of r  

is 0.5, 0.7, 1.0, 1.2, 1.5, the two values change separately. 
The fluctuating values are 18, 8, 20, 33, 16 and 0.4990, 
0.0760, 0.9050, 0.8890, 0.7950, so the two vales fluctuate 

least when 0.7r  . Similarly, the changeable range is 

least when 0.7C  , the two values only change 2 and 

0.1410. In general, the two parameters result into slightly 
alteration, so we will choose the two best parameters to do 

the following experiments, that is to say 0.7r   and 

0.7C  . 

 

B. Contrastive Experiments between DPSO-GA and 

DPSO-SA 

Analysis of results and time. In this part, we study the 
comparison on the effectiveness of the DPSO-GA 
algorithm and the DPSO-SA algorithm by do a mount of 
experiments. Three experimental frameworks, namely E2, 
E3, E4, are all considered having three influence factors: 

the value of K , demand ( )kd , and the penalty ( )kp . 

Table 3 clearly presents a summary of all experimental 
frameworks. 

TABLE 2.  RESULTS FOR EXPERIMENT E1 

 

TABLE 3.  FRAMEWORK OF COMPARISON EXPERIMENTS 

 

TABLE 4.  RESULTS FOR EXPERIMENT E2 
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TABLE 5.  .RESULTS FOR EXPERIMENT E3 

 

TABLE 6.  .RESULTS FOR EXPERIMENT E4 

In table 4, we can see that the all results obtained by 
the DPSO-SA algorithm is bigger than that of the 

DPSO-GA algorithm expect the case of value 180K  , 

especially, the difference of result is 284 between the two 
DPSO algorithms, so the DPSO-GA is better to get the 
optimal result. In addition, the total time of DPSO-GA is 
shorter than that of the DPSO-SA, the comparison is the 

most outstanding at value 40K  . But beyond that, 

there is a very obvious disadvantage both in the two DPSO 
algorithms that is the total time of the two DPSO 
algorithms will increase to about 3000 seconds which is 
about 50 minutes when the request calls is up to 1000. So, 
the two algorithms will cost too much time to solve the 
actual problem when request calls is a large number. 

Table 5 shows the results for experiment E3, and 
performs the changing fact of results and times when the 
demand increases. We can see that the result of DPSO-SA 
algorithm is more than that of DPSO-GA clearly once the 

demand increases to [100,800]U . However, there are 

two results bigger than that of the DPSO-SA, which show 
that the DPSO-GA algorithm is not stable. 

In the Table 6, it is shown that the different results 
between DPSO-GA algorithm and DPAO-SA algorithm 
when the penalty increased. We can see that the influence 
of penalty’s supremum is not be neglected, in which the 
results of the two algorithms are the most significant once 
the penalty’s supremum is up to 100. Therefore, the 
DPAO-GA is better to solve the PCCC problems with 
higher penalty. 

Analysis of convergence. For more effective 
comparison on the two algorithm, we use their 
convergence to do it. First, we let three variables be 

100K  , [1,20]kd U , [1,10]kp U , the first 

two pictures of Fig.1. performs the convergence that 
DPSO-GA has better convergence rate, in which the fit 
curve of DPSO-GA is in an iterative smooth before 30 
times but the other is after 30times. Then we replace the 

value of K , let K  be 50. The last two pictures of Fig. 1 
show that the convergence of DPSO-GA begins to 
converge for 20 iterations, the other begins for 40 
iterations. 

Advances in Computer Science Research, volume 44

468



 

Figure 1. Fit curve with 100K   and 50K  . 

IV. CONCLUSION 

To our knowledge, the application of PSO algorithm in 
solving the PCCC problem on lines was proposed in this 
paper. We proposed two DPSO algorithms and then 
compare optimal results, running time and convergence of 
the two algorithms. Also, we found that DPSO-GA 
outperforms DPSO-SA in all of the experimental 

frameworks. We do some experiments to compare the 
results and iteration time of the two DPSO algorithms, we 
found that it is not about good or bad about the two 
algorithms, it is all about certain point. In addition, the two 
DPSO algorithms is not perfect, which have many 
disadvantages, thus, finding preferable ways to solve the 
PCCC problems is interesting in the future. Also, 
extending our two DPSO algorithms for solving other 
problems is attractive. 
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