
Discrete Particle Swarm Optimization Algorithms for the Prize-Collecting Call

Control Problem on Lines

Qian-Na Cui

School of Mathematics and Statistics, Yunnan University

Kunming, 650500, P.R.China

cuiqianna@126.com

Xing Wu

School of Mathematics and Statistics, Yunnan University

Kunming, 650500, P.R.China

wuxing123@163.com

Qiao-Yan Zhu

School of Mathematics and Statistics, Yunnan University

Kunming, 650500, P.R.China

zqy12356@qq.com

Abstract—In this paper,we propose two discrete

particle swarm optimization algorithms to solve a

prize-collecting call control problem on lines based on

the classical particle swarm optimization algorithm.

The two algorithms combine simulated annealing and

genetical methods with particle swarm optimization

respectively. Then, we do lots of experiments to

compare the two discrete particle swarm optimization

algorithms we addressed, in which we compare the

results and iteration time and the convergence of two

algorithms under some given variables. Finally,

computational results show that the proposed discrete

particle swarm optimization with genetic algorithm is

very efficient and can be quickly obtained good

results.

Keywords-DPSO algorithm; prize-collecting; call

control; lines

I. INTRODUCTION

In recent years, much attention has been paid to the
unsplittable flow problem (UFP). Simply summarized the
definition of this problem: given an undirected graph
where each edge has its capacity and a set of vertex pairs
with a positive demand and a positive profit. The goal is to
find a subset with the maximum profit form the given set
so that each chosen pair from the subset can satisfy its full
demand without exceeding its capacity.

Bansal et al. [1] considered the UFP on a line, they
simply introduced that the UFP is NP-hard. To solve this
problem, they added dynamic programming into linear

programming relaxation to avoid a  n integrality gap

generated by linear programming. They presented the first
polynomial time (log)O n approximation algorithm for the

problem without any assumptions, which broke the
previous conclusion that is no polynomial time ()O n

approximation algorithm was known in the past.

Bonsma et al. [2] studied the UFP on a path, they
presented a constant-factor (7+ ) approximation

algorithm for this problem, which improved on the
previous ratio of (log)O n . They also showed a 2+ 
-approximation algorithm with slightly violated the
capacities, then they proved that this problem is strongly
NP-hard. Based on their results, another group gave a new
improvement. Anagnostopoulos et al. [3] implied a 2+

approximation for the same problem without violating any
capacities, which was better than the 7+ ratio for any

constant  > 0. Batra et al. [4] studied the same problem,

they obtained a PTAS when the the ratio of a task’s profit
and demand lie in a constant range. They also obtained a
PTAS, in which they were allowed to shorten the paths of
the tasks.

UFP was widely used in various fields, for which
studies did a lot of researches about its actual problems,
such as the problem of resource allocation. Bar-Noy et
al.[5] presented approximation algorithms for solving
resource allocation and scheduling problems, which
factors applied to many problems such as dynamic storage
allocation and so on. Li.et al. [7] considered another
problem about UFP, which is the ring loading problem
with penalty cost. In that paper, they showed a
1.58-approximation algorithm for the demand unsplittable
case. Later, motivated by the research of prize-collecting
Steiner tree problem [8], Li. et al. [6] introduced the
prize-collecting call control (PCCC) problem on lines, for
which they designed a 1.58-approximation algorithm using
a randomized rounding technique.

In our paper, we do a research about (PCCC) problem
on lines proposed by Li. et al. [6], which is prize-collecting
call control problem on lines, the description of this

problem is as follows. Given an line (,)G V E and a

set of K pairs of vertexes ,
in which each pair of vertexes is representative as a request

path. Each request path kP has a positive demand kd

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

464

and a positive penalty cost kp . The objective of PCCC

problem is to find a subset from so that the sum

of the total demand and the total penalty cost

 is minimum. The integer linear program
(ILP) of this problem is as follows:

in which for each , kP is either accepted if 1kx 

or rejected once 0kx  and L is the maximum load of

accepted paths, f is simply represent as the objective

function. Li. et al. [6] proved that the PCCC problem on
lines is NP-hard.

To solve above problem, we propose two algorithms
based on classical particle swarm algorithm. Kennedy and
Eberhart [9] proposed particle swarm optimization
algorithm in 1995, which is intended to gain a global
optimal value. The principles of PSO algorithm can be
described as follows [9]. It is assumed that the search

space is n -dimension and population size is M , in which

the position and velocity of particle i in the t th iteration

is defined by  1 2, , ,t t t t

i i i inX x x x L and

 1 2, , ,t t t t

i i i inV v v v L where 1,2, ,i M L . The flying

speed and position of particle i in the j th

 1,2, ,j n L subspace of the t th iteration are

calculated according to:

   1

1 1 2 2

t t t t t t

ij ij ij ij j ijv wv c r p x c r g x      (1)

1 1t t t

ij ij ijx x v   (2)

where w , called weight, is a constant to control the

impact of the previous velocities on the current velocity.
1c

and 2c are acceleration factors, which can impact the

moving trail of particles, 1r and 2r are uniformly distributed

random variables in [0,1],
jg can be representative as the

best history position in the whole population,
ijp is the

best history position of the current particle.

II. THE ALGORITHM OF DPSO

Due to the continuous character of PSO, Kashan et al.
[10] proposed a discrete particle swarm optimization
algorithm for scheduling parallel machines. We use this

algorithm methods efficiently to propose two DPSO
algorithms and then solve the PCCC problem with them.

A. The Proposed DPSO-GA Algorithm

We set k numbers of dimensions are presented each

for one of k request calls, hence, a solution for the

problem is represented by an array whose length is equal

to the number of non-zero elements of k −dimention

array. The location of a particle in the i th dimension

represents the i th path to be accepted or rejected, in

which the i th path is accepted if the i th value is 1, or

rejected if the if the i th value is 0. We draw lessons from

Kashan et al. [10] and propose a DPSO algorithm with the
basis on GA method to solve the PCCC problem on lines,
which is called DPSO-GA.

The process of generating a new position for selecting
an optimal solution in the given particle swarm is depicted
as follows [10]:

 (3)

 (4)

where
1R and

2R are 1-by- k arrays compromising 0

or 1 elements. These random arrays are generated from a
Bernoulli distribution in which the probability of getting 1

is equal to 0.5. t

iV and t

iX are the i th particle current

velocity and position arrays, respectively.
t

iP and
t

gP are

the i th particle best position and the global best position

in history. The subtraction operator and the

multiply operator   used by Kashan et al. [10] in

equation (3) and (4) are also our operators. The add

operator   is a crossover operator that method is

typically used in genetic algorithms, which method is the
only different point with Kashan et al. [10]. First, it
randomly generates two cross points from particle chain A.
Next, it exchanges the sub-chain between the two points
and two new chains obtained. Then, we select one of the
new chains randomly to be the result of the add operator.

B. The Proposed DPSO-SA Algorithm

Simulated Annealing (SA) is a random-search
technique proposed by Metropolis [11], whose major
advantage is an ability of suddenly jumping with
probability to avoid becoming trapped in local minima. So,
we can add the SA into DPSO algorithm to solve the
PCCC problem on lines efficiently, called DPSO-SA
algorithm, it continues the updating equation (3) and (4).
Before the updating of the position and the velocity vector,

given an initial temperature 0T , we compute the

temperature iT by    / (0)t t
i gf p f p T

e
 

 [11] , the algorithm

Advances in Computer Science Research, volume 44

465

repeats the updating operator until reaching the

temperature balance iT [11]. More important, the

simulated annealing operator is
1i iT CT  where

 0,1C until satisfying the convergence conditions.

DPSO-SA pseudo code.
Begin

 for i: 1 to swarm size

 X(i,:): generate a particle at

random;

 V(i,:): generate a particle at

random;

 P(i,:)=X(i,:);

 end for

 Pg=X(1,:);

 for i:2 to swarm size

 find the X(j,:) which satisfies the

min(f);

 end for

 Pg=X(j,:);

 given a initial temperature T(0);

 t=1;

 for i:1 to swarm size

T(i)=exp(-(f(P(i,:))-f(Pg))/T(0));

 end for

 generating new solution X', obtaining

the value:

 f(X')-f(X);

 if

min{1,exp(-(f(X')-f(X))/T(i))}>random

[0,1]

 accepting the solution X';

 else

 break;

 end if

 for i:1 to swarm size

 V(i,:):update the i-th particle

velocity vector by (3);

 X(i,:):update the i-th particle

position vector by (4);

 if min{f(X(i,:))}<min{f(P(i,:))}

 P(i,:)=X(i,:);

 else

 P(i,:)=P(i,:);

 end if

 end for

 if min{f(Pg)}>min{f(P(i,:))}

 Pg=P(i,:);

 end if

 T(0)=T(0)*C;

 t=t+1;

End

III. COMPUTATIONAL EXPERIMENTS

The two DPSO algorithms we proposed are better or
not to solve effectively the PCCC problem on lines, we do
lots of experiments to prove it. We will give 100 particles
to each algorithm and let the two programs run 100 times
for each experiment in MATLAB to reach results, and use
the finial result and the total running time to compare what
we want to. In all following tables, we let “result” and
“time” be representatives.

A. Experiments of DPSO-SA

Due to the optimal value obtained by SA is different
when its parameters changed a little, we do some
experiments to obtain the best parameters. An
experimental frame-works, namely E1, is considered each
of them having two influence factors: the initial

temperature 0T and the annealing function 1i iT CT  .

Theoretically, the annealing velocity is no more quicker

than  0 / 1 ln()iT T i  , in other words, iT is

diminishing once 2i  , so we design C is an alterable

constant in  0,1 . In order to obtain the best result,

insuring the initial temperature big enough is of great
importance, then we decide that the initial temperature is
similar to the function value of initial global best position

 gf p , that is to say let 0T be the relative to the

 gf p , for which we definite  0 gT rf p where r

is a changeable constant.

TABLE 1. FRAMEWORK E1

 K kd kp r C

E1 100 [1,3]U [1,5]U 0.5,0.7,1.0,1.2,1.5 0.2, 0.4,0.5, 0.7,0.9

Advances in Computer Science Research, volume 44

466

We can see the experimental results about DPSO-SA

with 100K  in Table2. Clearly, when the value of r

is 0.5, 0.7, 1.0, 1.2, 1.5, the two values change separately.
The fluctuating values are 18, 8, 20, 33, 16 and 0.4990,
0.0760, 0.9050, 0.8890, 0.7950, so the two vales fluctuate

least when 0.7r  . Similarly, the changeable range is

least when 0.7C  , the two values only change 2 and

0.1410. In general, the two parameters result into slightly
alteration, so we will choose the two best parameters to do

the following experiments, that is to say 0.7r  and

0.7C  .

B. Contrastive Experiments between DPSO-GA and

DPSO-SA

Analysis of results and time. In this part, we study the
comparison on the effectiveness of the DPSO-GA
algorithm and the DPSO-SA algorithm by do a mount of
experiments. Three experimental frameworks, namely E2,
E3, E4, are all considered having three influence factors:

the value of K , demand ()kd , and the penalty ()kp .

Table 3 clearly presents a summary of all experimental
frameworks.

TABLE 2. RESULTS FOR EXPERIMENT E1

TABLE 3. FRAMEWORK OF COMPARISON EXPERIMENTS

TABLE 4. RESULTS FOR EXPERIMENT E2

Advances in Computer Science Research, volume 44

467

TABLE 5. .RESULTS FOR EXPERIMENT E3

TABLE 6. .RESULTS FOR EXPERIMENT E4

In table 4, we can see that the all results obtained by
the DPSO-SA algorithm is bigger than that of the

DPSO-GA algorithm expect the case of value 180K  ,

especially, the difference of result is 284 between the two
DPSO algorithms, so the DPSO-GA is better to get the
optimal result. In addition, the total time of DPSO-GA is
shorter than that of the DPSO-SA, the comparison is the

most outstanding at value 40K  . But beyond that,

there is a very obvious disadvantage both in the two DPSO
algorithms that is the total time of the two DPSO
algorithms will increase to about 3000 seconds which is
about 50 minutes when the request calls is up to 1000. So,
the two algorithms will cost too much time to solve the
actual problem when request calls is a large number.

Table 5 shows the results for experiment E3, and
performs the changing fact of results and times when the
demand increases. We can see that the result of DPSO-SA
algorithm is more than that of DPSO-GA clearly once the

demand increases to [100,800]U . However, there are

two results bigger than that of the DPSO-SA, which show
that the DPSO-GA algorithm is not stable.

In the Table 6, it is shown that the different results
between DPSO-GA algorithm and DPAO-SA algorithm
when the penalty increased. We can see that the influence
of penalty’s supremum is not be neglected, in which the
results of the two algorithms are the most significant once
the penalty’s supremum is up to 100. Therefore, the
DPAO-GA is better to solve the PCCC problems with
higher penalty.

Analysis of convergence. For more effective
comparison on the two algorithm, we use their
convergence to do it. First, we let three variables be

100K  , [1,20]kd U , [1,10]kp U , the first

two pictures of Fig.1. performs the convergence that
DPSO-GA has better convergence rate, in which the fit
curve of DPSO-GA is in an iterative smooth before 30
times but the other is after 30times. Then we replace the

value of K , let K be 50. The last two pictures of Fig. 1
show that the convergence of DPSO-GA begins to
converge for 20 iterations, the other begins for 40
iterations.

Advances in Computer Science Research, volume 44

468

Figure 1. Fit curve with 100K  and 50K  .

IV. CONCLUSION

To our knowledge, the application of PSO algorithm in
solving the PCCC problem on lines was proposed in this
paper. We proposed two DPSO algorithms and then
compare optimal results, running time and convergence of
the two algorithms. Also, we found that DPSO-GA
outperforms DPSO-SA in all of the experimental

frameworks. We do some experiments to compare the
results and iteration time of the two DPSO algorithms, we
found that it is not about good or bad about the two
algorithms, it is all about certain point. In addition, the two
DPSO algorithms is not perfect, which have many
disadvantages, thus, finding preferable ways to solve the
PCCC problems is interesting in the future. Also,
extending our two DPSO algorithms for solving other
problems is attractive.

ACKNOWLEDGMENTS

The research was supported by the National Nature
Science Foundation of China [No. 11301466] and the
Natural Science Foundation of Yunnan Province of China
[No.2014FB114].

REFERENCES

[1]. N. Bansal, Z. Friggstad, R. Khandekar and M.R. Salavatipour.: A
Logarithmic Approximation for Unsplittable Flow on Line Graphs.
In: Proceeding of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1–15 (2014)

[2]. P. Bonsma, J.Schulz and A. Wiese.: A Constant-factor
Approximation Algorithm for Unsplit-table Flow on Paths. J.
SIAM J. Compute. 43, 767–799 (2014)

[3]. A. Anagnostopoulos, F. Grandoni, S. Leonardi and A. Wiese.: A
Mazing 2+ε Approximation for Unsplittable Flow on a Path. In:
Proceeding of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 26–41 (2014)

[4]. J. Batra, N. Garg, A. Kumar, T. Mo m̈ek and A. Wiese.: New
Approximation Schemes for Unsplittable Flow on a Path. In:
Proceeding of the Twenty-Sixth Annual ACM-SIAM Sym-posium
on Discrete Algorithms, pp. 47–58 (2015)

[5]. A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. Schieber.:
A Unified Approach to Approximating Resource Allocation and
Scheduling. J. ACM. 48, 1069–1090 (2001)

[6]. W. Li, J. Li, L. Guan and Y. Shi.: The Parize-Collection Call
Control Problem on Weighted Lines and Rings. J. Rai. Oper. Rea.
50, 39–46 (2016)

[7]. W. Li, J. Li, L. Guan.: Approximation Algorithms for the Ring
Loading Problem with Penalty Cost. J. Inf. Pro. Let. 114, 56–59
(2014)

[8]. A. Archer, M.H. Beteni, M.T. Hajianhayi and H. Karloff.:
Improved Approximation Algo-rithms for Prize-Collecting Steiner
Tree and TSP. J. SIAM J. Cmpute. 40, 309–332 (2011)

[9]. J. Kennedy, RC. Eberhart.: Particle Swarm Optimization. In:
Proceeding of IEEE International Conference on Neural Networks,
pp. 1942–1948. IEEE Serverce Center, Piscataway (1995)

[10]. A. H. Kashan and B. Karimi.: A Discrete Particle Swarm
Optimization Algorithm for Scheduling Parallel Machines. J.
Comprter and Industrial Engineering. 56, 216–223 (2009)

[11]. N. Metropolis, AW. Rosenbluth, MN. Rosenbluth, AH. Teller and
E. Teller.: Equation of State Calculations by Fast Computing
Machines. J. Chem. Phys. 21, 1087–1090 (1953)

Advances in Computer Science Research, volume 44

469

