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Abstract—It is generally demanded for strict frequency 

estimation of sinusoidal signal in a good many 

engineering practice situations. This paper puts 

forward an iterative frequency estimation algorithm 

on strength of the interpolation of Fourier coefficients 

of weighted samples. The algorithm is practically 

believed to be almost applicative for all regular 

window functions. Systematic errors of a variety of 

windows are given in this paper, and the proposed 

algorithm’s performance is examined and verified 

with occurrence of white Gaussian noise. The 

outcomes of simulation identify that it could be 

significantly lessened for errors touched off by the 

mistaken location of spectral line. It is direct and 

candid to implement the proposed algorithm with high 

precision, benign compatibility and favorable 

robustness to additive noise, which altogether endow it 

a perfect algorithm to strictly estimate the frequency 

of spectral analysis. 

Keywords-Discrete Fourier Transform; Normalized 

frequency; Parameter estimation; Zero-padding  

I. INTRODUCTION 
Accurate parameters estimation (frequency, amplitude, 

and phase) of sinusoids contaminated with random noise 
appears in subject of various fields for several decades. For 
instance, a typical problem encountered in vibration 
analysis of rotating machinery is to estimate parameters of 
a sampled multi-frequency signals under additive noise. 
Usually, that a new peak value emerges in spectrum or the 
root-mean-square (RMS) value of the vibration at an 
integer multiple of the fundamental frequency changes, 
can be regarded as the sign of a probable error [1]. With 
the increasing application of non-linear devices and 
periodical time-variable loads in electrical power system, 
distortion of current and voltage waveforms becomes a 
serious problem. Therefore, a real-time analysis and 
control of electric power harmonic is of great significance 
for maintaining the electric energy quality, preventing 
damage to the electric network systems and saving energy 
[2-3]. Besides, a number of audio coding technologies 
have been developed recently, in which the audio signal is 
decomposed into sinusoids and noise before coding. The 
decomposition, of coures, depends on the accurate 
frequency estimation of audio signal. Previous literature 
has introduced various estimation approaches which can 

be generally classified into time domain and frequency 
domain ones. Attributing to the easy operation and high 
efficiency, the frequency domain approaches, based on the 
discrete Fourier transform (DFT) and implemented by the 
fast Fourier transform (FFT), are often used. However, 
there are also some inherent drawbacks in frequency 
domain methods, such as the picket fence effect and the 
spectral leakage effect, which will bring about significant 
errors in frequency estimates if the signal is noncoherently 
sampled [4, 5]. Studies has shown that if we can afford 
additional computational cost, it is possible to compensate 
the errors and obtain high-accuracy frequency estimates 
even with a small number of samples.  

The interpolated DFT algorithm (IpFA) is one of the 
most widely studied method to correct the errors. The 
essence of this method is to obtain the frequency estimate 
of a signal with the weighted average of a certain number 
of known spectral bins [6-8]. When a maximum sidelobe 
decay window is selected, the frequency can be estimated 
by means of simple analytical relationships. Based on the 
research of Offelli and Petri, Duda deduced the polynomial 
approximation interpolation algorithm (which is suitable 
for the Dolph-Chebyshev windows and the Kasier-Beaasel 
windows [12]. Nevertheless, the polynomial coefficients 
are demanded to be calculated before analysis, which 
signifies that the coefficients of various windows must be 
worked out and saved in memorizer in advance. The 
process is inevitably intensive and troublesome, 
particularly for the adjustable windows whose properties 
can be regulated by one or multiple parameters. 

In this paper, we firstly proposed a new interpolation 
algorithm for the Hanning window, in which the zero 
padding technique was adopted to obtain more spectrum 
lines within a frequncy interval. Subsequently, the new 
algorithm was extended to be compatible with other 
classic windows by introducing the main-lobe fitting 
technique [9-11, 15]. We studied the systematic errors of 
the suggested method for various windows as well as the 
performance under white Gaussian noise. Finally, a 
comparative study was done. It was demostrated by 
simulation that in noise condition the proposed algorithm 
was more robust than the traditional algorithms. 

II. THEORETICAL BACKGROUND 

Let us consider, for simplicity but without loss of 
generality, the continuous cosine signal contaminated with 
additive white noise, which is given in the form  
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where A denotes the amplitude, f0 denotes frequency, 

0 denotes the phase angle, t denotes the continuous-time 

variable and ( )z t  is the white noise. After sampling at 

frequency fs over the observation interval 

tN ( sft /1 ), the following discrete cosine signal of 

N samples 
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becomes available. To meet the Ny-quist Sampling 
Theorem, it is supposed that fs surpasses 2f0. The 

frequency resolution is obtained by Nff s / . If the 

signal is asynchronously sample 

the normalized frequency 0
lies between two largest 

spectral lines[13].Therefore, 0  can be further written as: 

ww  0          (3)
 

where w and w  (–0.5 < w ≤ 0.5) are respectively the 

integer part and the fractional part.
 0 could be also 

defined as  
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The integer part w can be readily and correctly 

determined by means of a maximum search routine, as 
long as the SNR is above threshold. The weighted samples 

can be acquired when signal samples )(ny  is multiplied 

by data window values w(n): 
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On strength of the definition of DFT, the weighted 
signal yw(n) of DFT coefficients can obtain calculated as: 
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In the above Equation (6), WN(k) represents the 

window )(nw  from Discrete Time Fourier Transform 

(DTFT). Putting equation (3) into (6), the largest 
magnitude would be acquired through: 
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In equation (7), the second sign on the right side means 
leakage offer by imaginary part of the spectrum. The 

conditions are postulated that, 0  meets the requirements 

of 
0 5   and 

0 / 2 5N    so as to make sure 

leakage cased by the spectrum’s negative part is the 
smallest which could be neglected.  

Similarly, the second and the third largest spectral lines 
can also be determined. With proper combination of two 
or more spectral lines, a ratio   can be obtained which 

only depends on the selected window and the frequency 

deviation w . In other words, if the data window is 

known, w can be solely determined by 
 

)( hw                 (8)
 

For maximum side-lobe decay windows [2, 3, 5, 7, 8, 

13, 14], w  can be written as a function of   in a 

simple and explicit form. For others, the polynomial 
approximation solution is suggested. In next part, we will 
introduce an interpolation algorithm which is simple and 
can be applied to almost all classic windows. 

III. PROPOSED ALGORITHM 

A. Proposed Algorithm  

Zero-padding is a technique defined as appending zero 
values to the weighted samples prior to the DFT 
calculation. The appended zero values are treated as 
additional samples collected at the same rate, and therefore 
extending the measurement time, as shown in (8)  
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where L N zeros are added. Acoordingly, the discrete 

spectrum extends as well. It results in more accurate 
sampling of the signal spectrum because, instead of N 

spectrum samples, NM   samples of the same spectrum 

are available. However, it shoud be pointed out that 
padding the data with zeros and computing a longer FFT 
does give more frequency domain points, but it does not 
improve the fundamental limit, nor does it alter the effects 
of aliasing error[14]. The resolution limits are established 
by the observation interval and the sampling rate. No 
amount of zero padding can improve these basic limits and 
the spectrum parameters, such as signal-to-noise ratio and 
the spectrum leakage level, remain unchanged.The DFT of 
Eq.(9) by 
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Compared with Eq.(4), we obtain that  
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Acoordingly, Eq. (7) can be reformulated as 
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where   and   are respectively the integer part and 

the fractional part of 0 . Similarly,   is retruned by 

the maximum search routine of ( )Y k . At this stage, three 

largest lines of ( )Y k  are given by ( )Y  , ( 1)Y    

and ( 1)Y   .  

The second term on the right in (12) represents the 

contribution from the imaginary part in the spectrum. If 

0 satisfies that 5< 0 < N/2–5, the interference form 

the second termcan will be very small and can be 

neglected. With this assumption, (12) reduces to  
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Similarly, we have that 
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Expanding the sine terms in Eqs. (14b) and (14c) and 
combining them together, we achive that  

We now introduce two variables 1 , 2  defined as   
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For simplicity and conciseness, in the following parts, 

we use ""  in Eq. (16) instead of "" , but remember 
that the approximation relationship still remains. Now, Eq. 
(16) can be rewritten as 

1 2( ) ( ) 2 ( )cos( ).h h h            
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Expanding the terms ( )h   , ( )h    and 

( )h  , and finally the value of   could be obtained as  
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Because the value belong to interval (0.5, 0.5],so

 

eventually the decimal part of line frequency correction 

can be obtained as follow: 
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B. Extension for Other Classic Windows with Mainlobe 

Fitting 

In Subsection above, we have deduce the interpolation 
for the Hanning window with zero padding. In this 
subsection, it will be extended for other classic windows 
with mainlobe fitting technique. Set 

( ) [ ( )] ( ),p

O HX k W k W k 
      

(21) 

where ( )OW k  denotes the normalized spectrum of any 

classic window, ( )HW k  denotes the normalized 

spectrum of the Hanning window, 
( )/Han w np XL XL . 

XL  is the scalloping loss (SL) of the Hanning window 
and the corresponding window selected in (21), 
respectively. Scalloping loss is defined as the ratio of 
coherent gain for a frequency component located halfway 
between DFT bins to the coherent gain for a frequency 
component located exactly at a DFT bin, as indicated as  

SL=
(0.5)

(0)

W
XL

W


               

(22) 

where ( )W  is the DTFT of the relevant window. It can 

be found that ( )S k  is very small for most classic 

winodws if k is in the range ]5.0 ,5.0( . For example, 

the maximum value of ( )S k  is less than 
510

 for the 

Hamming window and less than 
410

 for the Blackman 

window. That means 
[ ( )]p

OW k
 and 

( )HW k
 fits well 

with each other in the middle of their mainlobes.[16] It is 
implied that the above interpolation algorithm can be 
extended for the classic window as long as k is limited in 

the range of ]5.0 ,5.0[ . With zero padding technique 

( 3  ), it is easy for the three largest spectral lines, 

which are used in the interpolation algorithm, to meet the 

requirement. Given the amount of computation and the 

radix-2 FFT algorithm, we often choose 4   in 
practice mesaurement. 

IV. COMPARATIVE STUDY 

In order to assess the proposed algorithm’s 
effectiveness, the proposed research is tested compaired 
with some traditional research methods in the Matlab 
simulation environment. This article chose two 
interpolation algorithm of Hanning window proposed by 
Grandke in 1983[9], the energy centrobaric method 
proposed by Dingkang in 1996[5], three polynomial 
approximation interpolation algorithm proposed by Duda 
in 2011[12], the average interpolation algorithm proposed 
by Belega in 2013 and other traditional methods [11]. In 
the simulation test, the new algorithm’s correction 
precision of frequency was tested compared with the 
traditional algorithm under the noise condition. 

A. Study of Noise Influence 

Before simulation analysis, the normalized frequency 
deviation   was set in the interval of (-0.5, 0.5), with the 
scanning step of 0.05HZ, the sampling frequency of 
1024HZ, also accompanied by the 1024 sampling points. 
This was done in order to better evaluate the ability to 
estimate the frequency deviation of each algorithm. For the 
above selected frequency deviation range, the simulation 
results are shown in Figure 1.    

Figure 1 shows that for four kinds of algorithms 
including the new algorithm, the maximum absolute value 
of the selected frequency between the real value and the 
estimated value. Each algorithm was all weighted in the 
Hanning window before the DFT operation began. As 
shown in Figure 1, except for D.Kang and Belege, the rest 
of the above-described four kinds of algorithms all 
received a high estimation accuracy,and Duda’s worked 
out the best. 

Additionally, the results of weighted samples of each 
algorithm in Hamming window and Blackman window 
were displayed. As XieMing could only be weighted in 
Hanning window, Figure 2 and Figure 3 give the 
simulation results of the remaining four kinds of algorithm. 

 

 
Figure 1. Frequency Error 
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Figure 2. Frequency Error 

 
Figure 3. Frequency Error

As illustrated in Figure 2 and Figure 3, the results 
obtained were not satisfactory for both Duda and Belege 
being weighted in either the non-Hanning or Hanning 
windows. For this proposed algorithm, the estimation 
results obtained from being weighted in non-Hanning 
window was still quite impressive, where the estimated 
error was less than. In summary, the above simulation 
analysis reminded that in the absence of noise or under 
low-noise conditions, the new algorithm, like the 
traditional algorithm, is not merely able to obtain better 
estimates, but also able to be applied to other classic 
functions in additional to Hanning window. 

B. The Study of Ability of Noise Resistance 

In the frequency correction, estimation accuracy in 
noisy conditions is an important indicator of the algorithm 
superiority. When noise is present and at a higher level, the 
signal to noise ratio is allowed to be set to a high value, 
making it much larger than the threshold, when the 
traditional methodologies for frequency correction may 
still estimate the correct spectral line in the wrong position. 
This is the case in the spectrum correction that is generally 

referred to as the incorrect polarity estimation (IPE). For 
example, nearly coherent sampling in 2-point algorithms 
and the sampling conditions of nearly half of the cycle in 
3-point algorithms are prone to the phenomenon of 
incorrect polarity estimation. The occurrence of IPE 
phenomenon may seriously affect the signal inversion 

results and the value of 


 . 

In order to test the new algorithm performance in terms 
of anti-additive noise, this section made a comparison 
between the new algorithm and the traditional algorithm. 
Before that, it was assumed that there was a theoretical 
signal with additive noise, where SNR was set as -5dB, so 
that the correct polarity estimates may occur (IPE 
phenomenon). One step was 0.025hz, and the scanning 
frequency ranged from 255.5hz to 256.5hz, and the 

random phase uniformly distributed in ],[  . For each 

frequency, 50,000 separate instances were generated 
accordingly. Figures 4 shows that the standard deviation 
error and the mean absolute error of each algorithm on the 
frequency deviation function in the Hanning windows. 
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Figure 4. RMSE of different algorithms for the Hanning window (SNR=-5dB) 

 
Figure 5. Frequency estimation errors for the Hamming window 

 
Figure 6. Frequency estimation errors for the Blackman window 

Figure 4 shows that estimation accuracy of D.kang is 
almost the same as Duda’s in the Gaussian noise 

conditions. With an increasing  , the frequency 

correction errors of these three kinds of algorithms 
(including standard deviation error and mean absolute 

error) were increased, respectively. When the value of   

changed in the range )5.0,5.0( , Belenge had its 

estimation error in noisy conditions that dropped to a 
lowest point first, and then continued to rise and reach a 

higher level. Nonetheless, the proposed algorithm, under 
similar conditions, had the estimated error values that were 
almost all equal, except for a few fluctuations, and the 
most importantly, the smallest error among the estimating 
results of all. Figures 5 and 6 also exhibit the estimated 
standard error of Hamming window and Blackman 
window. Obviously, the results of each method including 
new algorithms were basically the same as the simulation 
results with Hanning window in Figure 4. 
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Figure 7. Frequency estimation errors for the Hamming window 

 
Figure 8. Frequency estimation errors for the Blackman window

In summary, simulation study on different algorithms 
shows that the traditional methodologies under noisy 
conditions came out with lower estimation accuracy, 
compared to the proposed one, which was appealed with 
the standard deviation of estimation error being lowest in 
all algorithms, thus demonstrating its high anti-IPE 
performance. In addition, there are other aspects of 
advantages that come along with the new algorithm. This 
is exemplarily evidenced in traditional algorithms, where 
the line spacing is the frequency resolution, leading to 
significantly weaken noise correlation. The new algorithm 
used a more powerful spectrum lines, which features a 

spectral interval being only 1


 of the frequency 

resolution. This may contain similar noises in adjacent 
lines so that it is capable of eliminating most of the noises. 

V. CONCLUSION 

In this paper, an interpolation algorithm has been 
proposed to provide an accurate estimation of the 
frequency. The described algorithm is established on the 
zero padding technique and the main-lobe fitting technique. 
It is straightforward to understand and possesses the 
advantage of practical simplicity. The cost is a increase of 
computation of FFT. The new algorithm is compatible 
with msot classic windows. It does not need to know the 
spectrum of the data window, or carry out any calculation 
in advance. Through computer simulations, the 
effectiveness of the proposed algorithm for various 

windows was proved. The influence of systemactic error 
and white Gaussian noise on the accuracy of frequency 
estimations was also studied. In addition, the problem of 
IPE in the traditional interpolation algorithms was 
discussed. Simulation results show that the new algorithm 
has a intrinsic robustness against IPE and a higher 
resistance to additive noise than previous interpolation 
algorithms.  
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