

A Cache Utility Monitor for Multi-core Processor

Juan Fang, Yan-Jin Cheng, Min Cai, Ze-Qing Chang

College of Computer Science, Beijing University of Technology

Beijing, China

Email: fangjuan@bjut.edu.cn

Abstract-In recent years, high performance computing systems

have obtained more processing cores and shared a last level

cache (LLC). Now, the problem to the existing cache

partitioning techniques is that they give each core the number

of cache ways according to their need, these schemes have the

potential to realize significant performance increases, yet for

most part they do not consider LLC energy saving. In this

paper, we design and realize a multi-processing processor

monitor. Through a utility monitor we calculate the number of

hits and misses when allocate different cache ways to each

application. In other words, we use utility monitors to track the

access by each core to characterize each thread’s use of the

cache. Dynamically give each core the number of ways based

on the performance to achieve its highest utilization. On gem5,

we run Parsec benchmarks as our multi-threaded application.

We output the numbers of misses for all possible number of

ways, and find the number of associativity to achieve its

highest utilization. By analysing experimental results, cache

miss rate decreases with the increasing of the cache capacity.

Keywords-Multicore; Shared cache; Cache partitioning.

I INTRODUCTION

With the popularization of multi-core and many-core
technology, the operating system can greatly improve the
processing capability and computing performance of the
whole computer by parallelizing the computing tasks to
different physical cores. The competition of shared
resources introduced by multi-core technology, that is, the
hardware resources of shared tasks such as caches and
bandwidths running on various physical cores, has caused a
certain degree of shared resource snatching, which makes
the tasks on physical cores influence each other. And the
overall computing performance and service quality of the
system is degraded.

Shared cache effectively improve the utilization of
bandwidth and cache space, but inevitably lead to the
problem of resource competition. Generally, L2Cache
adopts LRU (Least Recently Used) strategy, which
effectively reduces the frequent page switching and memory
access behavior, but exposes its own disadvantages in multi-
core situation - there is a blind spot in the application which
have different cache requirement and cannot distinguish
effectively. Therefore, in the situation of shared L2Cache in
multi-core resource competition, some of the poor local
application may take up a lot of cache resources and
generate frequent page switching. So, parallel applications
cannot get enough cache resources and effective pages of
competitive applications are constantly being replaced,

resulting in lower cache hit rate, and serious performance
loss.

Through the above analysis, we need to find a cache
partitioning mechanism, which make effective cache
partition according to the cache’s demand of different
applications, reduce the performance impact because of the
cache resource competition, and improve computing
performance.

Zhang L, Liu Y and Wang R, et al [1], proposes a malloc
allocator-based dynamic cache partitioning mechanism with
page coloring, to make page coloring-based cache partition
more practical.

Khaitan S K and Mccalley J D[2] using decay cache
technique, dynamically turn off the cache blocks to save
cache energy.

Altmeyer S, Cucu-Grosjean L and Davis R
I[3]investigate static probabilistic timing analysis (SPTA)
for single processor real-time systems that use a cache with
an evict-on-miss random replacement policy.

This article will discuss the design and implementation
of cache utility monitor (UMON). In the second part, we
will briefly describe the cache partitioning technology, that
is, cache space prediction, cache allocation strategy and
partition realization mechanism. In the third part, we will
briefly describe the design and implementation of the utility
monitor, the experimental process and the experimental
results. The fourth part summarize this article and point out
the direction of further research.

II CACHE PARTITIONING TECHNOLOGY

Cache partitioning is an effective means to eliminate
shared cache interference, which controls on-chip cache
space by software without the need to do too much cache
structure changes. A cache partitioning scheme is divided
into three parts: cache space prediction, cache allocation
strategy and partition realization mechanism.

A. Cache Space Prediction

Before partitioning the shared cache space, we need to
determine the cache allocation ratio. The LRU replacement
strategy used in the modern cache structure does not
guarantee the effective allocation of the shared LLC for
each program. The LRU replacement policy is based on
program memory requirements (Locality feature) to allocate
cache space, which is the same for all programs.

There are many techniques for cache space allocation
prediction, the most notably among them are SDP (Stack
Distance Profile) and MRC (Miss Rate Curve). SDP will be
discussed in the third part of this article. MRC is used to

3rd International Conference on Wireless Communication and Sensor Network (WCSN 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 44

561

describe the curve of cache miss rate when a program
obtains different cache size, through control the (software or
hardware) available cache space of program to get the
corresponding cache miss rate. MRC can get the best
program performance and cache space ratio.

B. Cache Allocation Policy

In the shared cache conditions, after predicting the cache
space which programs take up, the following is to determine
each program's cache allocation ratio according to specific
indicators.

 The utility function is designed according to the number
of cache misses when the cache memory space in the a-way
cache and the b-way cache(a < b)memory in the cache
partitioning mechanism with the cache path granularity:

 (1)

In order to determine the utility of programs, we need to
add a dedicated utility monitor in the cache structure,
dynamically obtain the cache misses and calculate the ratio
of cache space allocation to achieve highest utilization.

C. Cache Partitioning Mechanism

Cache partitioning technology is classifying the access
data of thread according to their locality and fixing the data
in the specific cache interval according to the strength of
data locality. Through this method of cache partitioning, the
data utilization in the cache can improve, and reduce the
cache miss rate.

The current cache partitioning mechanism can be
classified into four categories: cache way partition, cache set
partition, page partitioning, and the partitioning which
controls cache insertion and substitution strategy.

III DESIGN AND IMPLEMENTATION OF CACHE

UTILITY MONITOR

We deploy a cache utility monitor on each core to obtain
contention thread’s cache resourse usage. Then the collected
information is passed to the partitioning algorithm to
determine the cache capacity of each thread, dynamically
shut down the unused cache way, to achieve static power
savings.

A. Stack Distance Profile

The stack distance profile is a histogram for threads,
which is under different cache resources, to analyze hits and
misses of the data blocks, as shown in Figure 1.

Figure 1. Histogram of stack distance profile

In the set-associative cache, the LRU replacement
strategy presents a stack property, that is, in each set, cache
block sort in order, the top of the stack store the most
recently used (MRU) cache data block, and the least
recently used (LRU) cache data block is stored in the
bottom of the stack. The stack distance is the relative
distance, which is from the top of the LRU stack to the
access data block. LRU replacement strategy select the
replacement and hits position according to the stack
characteristics. If a cache miss, the data block pop which is
in LRU position, the other positions data goes to the bottom
of the stack, and the new data block pushes into the MRU
position. If a cache block in the stack is hit, then the data
block inserts into the MRU position, other data blocks
whose distance is less than its stack distance turn down in
order.

B. Algorithm Description of Calculating Miss Number

By using the stack property of LRU algorithm, we can
calculate the number of L2cache misses generated by
different associativity n '(n' <n) at the same time without
changing the associativity of L2cache. For this reason, n + 1
counters are required for the n-way associative cache using
the LRU replacement algorithm, C1, C2 …, Cn, C> n, each
time the cache request, one of n +1 counter will plus one. If
the request is a hit, assuming that the stack distance of the
element is k, then the Ck counter is incremented by one. If
the request is missing, the C> n counter is incremented by
one.

Therefore, the number of misses generated by the n-way
associative using the LRU algorithm can be expressed as:

 (2)

C. Utility Monitor(UMON)

LRU cache replacement strategy, which is multi-core
processor using most, is an on-demand distribution method.
It allocates the cache space according to required when
program access to data, so cannot guarantee all programs on
the shared last level cache obtain effective allocation of
cache. Some strong local programs cannot obtain enough
cache space cause performance degradation. Based on the
utility of the cache allocation strategy, the program can
effectively predict the miss rate in different associativity.

Each core is assigned a Utility Monitor. To monitor the
application's usage efficiency, we need to track the number
of cache misses generated by all possible associativity of
cache. That is, we monitor the access of each core, describe
the characteristics of each thread when using the cache, and
use the SDP (Stack Distance Profile) to find the number of
ways for each core to achieve its highest utilization. The
results will be submitted to the partitioning algorithm. The
architecture of cache monitor is shown in Figure 2.

U
b
a
 m i s s

a  m i s s
b

m i s s e s
n '
 C

 n
 C

i
i  n '  1

n



Advances in Computer Science Research, volume 44

562

Figure 2. Architecture of utility monitor

D. Cache Partitioning Based on Utility

To determine cache partitions we use Algorithm 1. We
are not concerned with allocating ways to each core
individually, so we only need to find the number of ways for
each core to achieve its highest utilization (max_mu). The
mu is defined as follow. We assume all threads have equal
priority and therefore give each core a number of ways
based on the performance benefit it can realize from them. If
thread were to have differing priorities we could incorporate
this information into Algorithm1 by increasing the number
of ways that high-priority threads receive and decreasing the
number allocated to low-priority threads.

 (3)

IV EXPERIMENTAL RESULTS AND ANALYSIS

The data of cache characteristics, including cache miss
rate, cache hit rate and cache reuse distance. Cache miss rate
is the easiest to sample, so the cache miss rate is chosen as
the experimental analysis data. In gem5[4], we run Parsec
benchmarks[5] as our multi-threaded application. The
application include blackscholes, bodytrack, canneal, ferret,
fluidanimate, streamcluster and swaptions. We get the
number of L2cache miss at stats.txt, through the calculation,
we can get each Cache miss rate in the different
associativity. At the same time, we can get the optimal
number of ways for each core to achieve highest utilization.
This data will be next used in cache partition decision.

A. Miss Rate Under Different Benchmarks

As is shown in Table 1 system configuration, we run
seven benchmarks in gem5, and get different miss rate curve
under different cache space.

TABLE I. EXPERIMENTAL CONFIGURATION
PARAMETERS

Parameters Configurations

Processor 4-cores

Shared L2Cache 4MB, 8-way

Figure 3. Miss rate in different benchmark

Figure 4. Miss rate of different associativity in blackscholes

According to the experimental results in Fig. 3 and Fig.
4, it can be concluded that with the increasing number of
cache way, the miss rate is reduced. By comparing the data
of seven benchmarks, it is found that the missing rate is
basically the same, the difference is only after the decimal
point. Bit, so we only analyze blackscholes.

B. Miss Rate Under Different Numbers of Cores

As is shown in Table 2 system configuration, we run the
bodytrack / canneal benchmark in the gem5 to obtain the
missing rate data under different cache spaces when the
number of cores is 1, 2 and 4.

TABLE II. EXPERIMENTAL CONFIGURATION PARAMETERS

Parameters Configuration

Processor 1/2/4-cores

Shared L2Cache 4MB, 8-way

m u 
g e t N u m M i s s e s (0)  g e t N u m M i s s e s (j)

j

Advances in Computer Science Research, volume 44

563

Figure 5. Miss rate of different number of cores in bodytrack

Figure 6. Miss rate of different number of cores in bodytrack

According to the experimental results in Fig. 5 and Fig.
6, we can see that the cache miss rate decreases with the
increase of the cache capacity in different number of cores.

C. Miss Rates at Different Cache Sizes

TABLE III. EXPERIMENTAL CONFIGURATION PARAMETERS

Parameters Configuration

Processor 4-cores

Shared L2Cache 512kB/1MB/2MB/4MB, 8-way

Figure 7. Miss rate of different size of LLC in blackscholes

By analyzing the data in Figure 7. As the L2 cache size
increased from 512kB to 4MB, the missing rate is declining,
when the associativity is greater than 1. And the same can
be concluded. With the increase of L2cache associativity,
the cache miss rate is decreasing.

 In the experiment, we can obtain the number of cache
ways for each core, so that they can reach the highest
efficiency. This data will be used in the next step of cache
partition decision, and finally achieve the goal of reducing
dynamic and static power consumption.

V CONCLUSION

In this paper, we design and implement a utility monitor
for multi-core processor. Through monitors to monitor each
core access, we describe the characteristics of each thread
using the cache, and use the Stack Distance Profile to
determine how much program cache space could have better
performance and dynamically allocate the best number of
each of the core cache way, so that they achieve the highest
utilization.

By observing the image of the cache miss rate obtained
by the experiment, it can be concluded that the miss rate is
decreasing with the increase of the cache associativity. We
assign each core the best number cache way according to
the Stack Distance Profile, this data will be used for future
cache partition decision.

The latter part of the work will be divided data cache
into shared area and private area, private data can only
access the cache of private area, shared data can only access
the cache shared area, according to the region-aware cache
partition, dynamically shutdown the cache way when
unused, and ultimately reduce the dynamic power
consumption.

This research was supported by the Beijing Municipal
Science and Technology Project (Grant No.
Z151100002615032), along with other government sponsors.
The authors would like to thank the reviewers for their
efforts and for providing helpful suggestions that have led to
several important improvements in our work. We would
also like to thank all the teachers and students in our
laboratory for helpful discussions.

REFERENCES

[1] Zhang, Ludan, et al. Lightweight dynamic partitioning for last-level
cache of multicore processor on real system. Journal of
Supercomputing 69,33-38 (2014)

[2] Khaitan, Siddhartha Kumar, and J. D. Mccalley. Optimizing cache
energy efficiency in multicore power system simulations. Energy
Systems 5,63-177 (2014)

[3] Altmeyer, Sebastian, L. Cucu-Grosjean, and R. I. Davis. Static
probabilistic timing analysis for real-time systems using random
replacement caches. Real-Time Systems 51,7-123 (2015)

[4] N. Binkert, B.M. Beckmann, G. Black, S.K. Reinhardt et al. The
GEM5 simulator. ACM SIGARCH Computer Architecture News 39,
1-7 (2011)

[5] Bienia, Christian. Benchmarking modern multiprocessors.
Dissertations & Theses - Gradworks (2011).

Advances in Computer Science Research, volume 44

564

file:///E:/Program%20Files%20(x86)/Dict/7.0.0.1012/resultui/dict/result.html

Algorithm 1: Determining cache requirements.

Tways = N; /*Total number of cache ways in LLC */

blocks_req[c] = 0; /*For each competing core, c */

for each core c do

max_mu[c] = get_max_mu(c, Tways);

blocks_req[c] = min blocks to get max_mu[c] for core c;

end

return block_req;

get_max_mu(c, Tways);

max_mu = 0;

for j = 1; j <= Tways; j++ do

U = change in misses for core c when moving from 0 to j ways;

mu = U / j;

if mu > max_mu then

max_mu = mu;

end

end

return max_mu;

Advances in Computer Science Research, volume 44

565

