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Abstract-In recent years, high performance computing systems 

have obtained more processing cores and shared a last level 

cache (LLC). Now, the problem to the existing cache 

partitioning techniques is that they give each core the number 

of cache ways according to their need, these schemes have the 

potential to realize significant performance increases, yet for 

most part they do not consider LLC energy saving. In this 

paper, we design and realize a multi-processing processor 

monitor. Through a utility monitor we calculate the number of 

hits and misses when allocate different cache ways to each 

application. In other words, we use utility monitors to track the 

access by each core to characterize each thread’s use of the 

cache. Dynamically give each core the number of ways based 

on the performance to achieve its highest utilization. On gem5, 

we run Parsec benchmarks as our multi-threaded application. 

We output the numbers of misses for all possible number of 

ways, and find the number of associativity to achieve its 

highest utilization. By analysing experimental results, cache 

miss rate decreases with the increasing of the cache capacity. 
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I INTRODUCTION 

With the popularization of multi-core and many-core 
technology, the operating system can greatly improve the 
processing capability and computing performance of the 
whole computer by parallelizing the computing tasks to 
different physical cores. The competition of shared 
resources introduced by multi-core technology, that is, the 
hardware resources of shared tasks such as caches and 
bandwidths running on various physical cores, has caused a 
certain degree of shared resource snatching, which makes 
the tasks on physical cores influence each other. And the 
overall computing performance and service quality of the 
system is degraded. 

Shared cache effectively improve the utilization of 
bandwidth and cache space, but inevitably lead to the 
problem of resource competition. Generally, L2Cache 
adopts LRU (Least Recently Used) strategy, which 
effectively reduces the frequent page switching and memory 
access behavior, but exposes its own disadvantages in multi-
core situation - there is a blind spot in the application which 
have different cache requirement and cannot distinguish 
effectively. Therefore, in the situation of shared L2Cache in 
multi-core resource competition, some of the poor local 
application may take up a lot of cache resources and 
generate frequent page switching. So, parallel applications 
cannot get enough cache resources and effective pages of 
competitive applications are constantly being replaced, 

resulting in lower cache hit rate, and serious performance 
loss. 

Through the above analysis, we need to find a cache 
partitioning mechanism, which make effective cache 
partition according to the cache’s demand of different 
applications, reduce the performance impact because of the 
cache resource competition, and improve computing 
performance. 

Zhang L, Liu Y and Wang R, et al [1], proposes a malloc 
allocator-based dynamic cache partitioning mechanism with 
page coloring, to make page coloring-based cache partition 
more practical. 

Khaitan S K and Mccalley J D[2] using decay cache 
technique, dynamically turn off the cache blocks to save 
cache energy. 

Altmeyer S, Cucu-Grosjean L and Davis R 
I[3]investigate static probabilistic timing analysis (SPTA) 
for single processor real-time systems that use a cache with 
an evict-on-miss random replacement policy. 

This article will discuss the design and implementation 
of cache utility monitor (UMON). In the second part, we 
will briefly describe the cache partitioning technology, that 
is, cache space prediction, cache allocation strategy and 
partition realization mechanism. In the third part, we will 
briefly describe the design and implementation of the utility 
monitor, the experimental process and the experimental 
results. The fourth part summarize this article and point out 
the direction of further research.  

II CACHE PARTITIONING TECHNOLOGY 

Cache partitioning is an effective means to eliminate 
shared cache interference, which controls on-chip cache 
space by software without the need to do too much cache 
structure changes. A cache partitioning scheme is divided 
into three parts: cache space prediction, cache allocation 
strategy and partition realization mechanism.  

A. Cache Space Prediction 

Before partitioning the shared cache space, we need to 
determine the cache allocation ratio. The LRU replacement 
strategy used in the modern cache structure does not 
guarantee the effective allocation of the shared LLC for 
each program. The LRU replacement policy is based on 
program memory requirements (Locality feature) to allocate 
cache space, which is the same for all programs. 

There are many techniques for cache space allocation 
prediction, the most notably among them are SDP (Stack 
Distance Profile) and MRC (Miss Rate Curve). SDP will be 
discussed in the third part of this article. MRC is used to 
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describe the curve of cache miss rate when a program 
obtains different cache size, through control the (software or 
hardware) available cache space of program to get the 
corresponding cache miss rate. MRC can get the best 
program performance and cache space ratio. 

B. Cache Allocation Policy 

In the shared cache conditions, after predicting the cache 
space which programs take up, the following is to determine 
each program's cache allocation ratio according to specific 
indicators. 

 The utility function is designed according to the number 
of cache misses when the cache memory space in the a-way 
cache and the b-way cache(a < b)memory in the cache 
partitioning mechanism with the cache path granularity: 

   (1) 

In order to determine the utility of programs, we need to 
add a dedicated utility monitor in the cache structure, 
dynamically obtain the cache misses and calculate the ratio 
of cache space allocation to achieve highest utilization. 

C. Cache Partitioning Mechanism 

Cache partitioning technology is classifying the access 
data of thread according to their locality and fixing the data 
in the specific cache interval according to the strength of 
data locality. Through this method of cache partitioning, the 
data utilization in the cache can improve, and reduce the 
cache miss rate.  

The current cache partitioning mechanism can be 
classified into four categories: cache way partition, cache set 
partition, page partitioning, and the partitioning which 
controls cache insertion and substitution strategy. 

III DESIGN AND IMPLEMENTATION OF CACHE 

UTILITY MONITOR 

We deploy a cache utility monitor on each core to obtain 
contention thread’s cache resourse usage. Then the collected 
information is passed to the partitioning algorithm to 
determine the cache capacity of each thread, dynamically 
shut down the unused cache way, to achieve static power 
savings. 

A. Stack Distance Profile 

The stack distance profile is a histogram for threads, 
which is under different cache resources, to analyze hits and 
misses of the data blocks, as shown in Figure 1. 

 
Figure 1.  Histogram of stack distance profile 

In the set-associative cache, the LRU replacement 
strategy presents a stack property, that is, in each set, cache 
block sort in order, the top of the stack store the most 
recently used (MRU) cache data block, and the least 
recently used (LRU) cache data block is stored in the 
bottom of the stack. The stack distance is the relative 
distance, which is from the top of the LRU stack to the 
access data block. LRU replacement strategy select the 
replacement and hits position according to the stack 
characteristics. If a cache miss, the data block pop which is 
in LRU position, the other positions data goes to the bottom 
of the stack, and the new data block pushes into the MRU 
position. If a cache block in the stack is hit, then the data 
block inserts into the MRU position, other data blocks 
whose distance is less than its stack distance turn down in 
order. 

B. Algorithm Description of Calculating Miss Number  

By using the stack property of LRU algorithm, we can 
calculate the number of L2cache misses generated by 
different associativity n '(n' <n) at the same time without 
changing the associativity of L2cache. For this reason, n + 1 
counters are required for the n-way associative cache using 
the LRU replacement algorithm, C1, C2 …, Cn, C> n, each 
time the cache request, one of n +1 counter  will plus one. If 
the request is a hit, assuming that the stack distance of the 
element is k, then the Ck counter is incremented by one. If 
the request is missing, the C> n counter is incremented by 
one. 

Therefore, the number of misses generated by the n-way 
associative using the LRU algorithm can be expressed as: 

  (2) 

C. Utility Monitor(UMON) 

LRU cache replacement strategy, which is multi-core 
processor using most, is an on-demand distribution method. 
It allocates the cache space according to required when 
program access to data, so cannot guarantee all programs on 
the shared last level cache obtain effective allocation of 
cache. Some strong local programs cannot obtain enough 
cache space cause performance degradation. Based on the 
utility of the cache allocation strategy, the program can 
effectively predict the miss rate in different associativity. 

Each core is assigned a Utility Monitor. To monitor the 
application's usage efficiency, we need to track the number 
of cache misses generated by all possible associativity of 
cache. That is, we monitor the access of each core, describe 
the characteristics of each thread when using the cache, and 
use the SDP (Stack Distance Profile) to find the number of 
ways for each core to achieve its highest utilization. The 
results will be submitted to the partitioning algorithm. The 
architecture of cache monitor is shown in Figure 2. 
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Figure 2.  Architecture of utility monitor 

D. Cache Partitioning Based on Utility 

To determine cache partitions we use Algorithm 1. We 
are not concerned with allocating ways to each core 
individually, so we only need to find the number of ways for 
each core to achieve its highest utilization (max_mu). The 
mu is defined as follow. We assume all threads have equal 
priority and therefore give each core a number of ways 
based on the performance benefit it can realize from them. If 
thread were to have differing priorities we could incorporate 
this information into Algorithm1 by increasing the number 
of ways that high-priority threads receive and decreasing the 
number allocated to low-priority threads. 

 (3) 

IV EXPERIMENTAL RESULTS AND ANALYSIS  

The data of cache characteristics, including cache miss 
rate, cache hit rate and cache reuse distance. Cache miss rate 
is the easiest to sample, so the cache miss rate is chosen as 
the experimental analysis data. In gem5[4], we run Parsec 
benchmarks[5] as our multi-threaded application. The 
application include blackscholes, bodytrack, canneal, ferret, 
fluidanimate, streamcluster and swaptions. We get the 
number of L2cache miss at stats.txt, through the calculation, 
we can get each Cache miss rate in the different 
associativity. At the same time, we can get the optimal 
number of ways for each core to achieve highest utilization. 
This data will be next used in cache partition decision. 

A. Miss Rate Under Different Benchmarks 

As is shown in Table 1 system configuration, we run 
seven benchmarks in gem5, and get different miss rate curve 
under different cache space. 

TABLE I. EXPERIMENTAL CONFIGURATION 
PARAMETERS 

Parameters Configurations 

Processor 4-cores 

Shared L2Cache 4MB, 8-way 

 
Figure 3. Miss rate in different benchmark 

 

Figure 4. Miss rate of different associativity in blackscholes 

According to the experimental results in Fig. 3 and Fig. 
4, it can be concluded that with the increasing number of 
cache way, the miss rate is reduced. By comparing the data 
of seven benchmarks, it is found that the missing rate is 
basically the same, the difference is only after the decimal 
point. Bit, so we only analyze blackscholes. 

B. Miss Rate Under Different Numbers of Cores 

As is shown in Table 2 system configuration, we run the 
bodytrack / canneal benchmark in the gem5 to obtain the 
missing rate data under different cache spaces when the 
number of cores is 1, 2 and 4. 
 

TABLE II.  EXPERIMENTAL CONFIGURATION PARAMETERS 

Parameters Configuration 

Processor 1/2/4-cores 

Shared L2Cache 4MB, 8-way 
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Figure 5. Miss rate of different number of cores in bodytrack 

 

Figure 6.  Miss rate of different number of cores in bodytrack 

According to the experimental results in Fig. 5 and Fig. 
6, we can see that the cache miss rate decreases with the 
increase of the cache capacity in different number of cores.  

C. Miss Rates at Different Cache Sizes 

TABLE III. EXPERIMENTAL CONFIGURATION PARAMETERS 

Parameters Configuration 

Processor 4-cores 

Shared L2Cache 512kB/1MB/2MB/4MB, 8-way 

 
Figure 7. Miss rate of different size of LLC in blackscholes 

By analyzing the data in Figure 7. As the L2 cache size 
increased from 512kB to 4MB, the missing rate is declining, 
when the associativity is greater than 1. And the same can 
be concluded. With the increase of L2cache associativity, 
the cache miss rate is decreasing. 

 In the experiment, we can obtain the number of cache 
ways for each core, so that they can reach the highest 
efficiency. This data will be used in the next step of cache 
partition decision, and finally achieve the goal of reducing 
dynamic and static power consumption. 

V CONCLUSION  

In this paper, we design and implement a utility monitor 
for multi-core processor. Through monitors to monitor each 
core access, we describe the characteristics of each thread 
using the cache, and use the Stack Distance Profile to 
determine how much program cache space could have better 
performance and dynamically allocate the best number of 
each of the core cache way, so that they achieve the highest 
utilization. 

By observing the image of the cache miss rate obtained 
by the experiment, it can be concluded that the miss rate is 
decreasing with the increase of the cache associativity. We 
assign each core the best number cache way according to 
the Stack Distance Profile, this data will be used for future 
cache partition decision. 

The latter part of the work will be divided data cache 
into shared area and private area, private data can only 
access the cache of private area, shared data can only access 
the cache shared area, according to the region-aware cache 
partition, dynamically shutdown the cache way when 
unused, and ultimately reduce the dynamic power 
consumption. 
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Algorithm 1: Determining cache requirements. 

Tways = N; /*Total number of cache ways in LLC */ 

blocks_req[c] = 0; /*For each competing core, c */ 

for each core c do 

max_mu[c] = get_max_mu(c, Tways); 

blocks_req[c] = min blocks to get max_mu[c] for core c; 

end 

return block_req; 

get_max_mu(c, Tways); 

max_mu = 0; 

for j = 1; j <= Tways; j++ do 

U = change in misses for core c when moving from 0 to j ways; 

mu = U / j; 

if mu > max_mu then 

max_mu = mu; 

end 

end 

return max_mu; 
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