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Abstract-This work investigates the problem of channel sensing 

order in spatially distributed networks with multi-user. We 

model this problem into a non-cooperative game and define a 

generalized interference metric. In order to minimize the 

aggregate interference and maximize the normalized 

throughput, we employ the no-regret learning algorithm. 

However, this algorithm requires information exchange. 

Therefore, we propose a modified no-regret learning algorithm 

that does not require information exchange. Through 

simulations, we evaluate our proposal and compare its 

performance with other algorithms, and the results obtained 

are close to the no regret learning algorithm and superior to 

random selection algorithm. 

Keywords-sensing order; spatially distributed networks; non-

cooperative game ;no-regret learning 

I.  INTRODUCTION  

The demand for spectrum is speedy increasing and some 
licensed bands is used inefficiently [1] push the idea that 
those free underutilized bands is used for opportunistic 
spectrum access (OSA) [2]. OSA requires reconfigurable 
networks devices, called cognitive radios (CR), can adapt 
their behavior in response to environment stimuli [3]. For 
this, these cognitive devices or secondary users (SUs) need 
to determine by spectrum sensing when primary users are 
active in order to avoid causing them a harmful interference 
[4]. Therefore, OSA is important to utilize the licensed 
frequency spectrum more efficiently through opportunistic 
access to unused spectrum bands. At present, sensing-based 
OSA is widely studied because it does not require the 
licensed users to alter their hardware or behavior [5]. In 
sensing-based OSA, SU monitors the environment to detect 
the primary user (PU) signals and operate when the band is 
empty [5]. But in practice, it relies on a combination of 
sensing and the use of geo-location spectrum occupancy 
databases [6]. 

When multiple channels are available for opportunistic 
access, time-slotted multiple access is widely considered in 
these works [7]-[12].The first portion of each time slot is 
used by SU to sense spectrum, and the second portion is used 
to access the free channel, if one is found [13]. However, 
when multiple secondary users have to search multiple 
available channels to access, these SUs will face competition 
from one another to access the channel. For example, if a 
channel is sensed free by two or more SUs and more than 
one of them decide to transmit on the channel, then collision 
occurs. Therefore, this paper investigates how SUs 

autonomously select channel sensing orders to reduce the 
number of collisions. 

In sensing-based OSA, the SUs are required to perform 
periodic spectrum sensing so that when a PU becomes active 
in a channel, the SUs can vacate that channel [14]. There are 
two broad categories of periodic sensing policies: a single-
channel sensing policy and a sequential channel sensing 
policy. Under a single-channel sensing policy, a SU first 
select a channel to sense in any given time slot and transmits 
if the channel is free; otherwise, SU stay silent for the entire 
duration of that time slot. The works in [15]-[20] proposed 
distributed learning and allocation strategies that employed 
adaptive randomization based on feedback for the SUs to 
arrive at orthogonal channel selections. Under a sequential 
channel sensing policy, in any given time slot, a SU can 
sense the channels sequentially based on some sensing order. 
The works in [21]-[23] proposed optimal policies for the 
selection of a channel sensing order for a single SU. Unlike 
[21]-[23], the work in [13] took into account multiple SUs 
competition for channels. The selection of an optimal 
sensing order by a coordinator for a two-SU networks in [8]. 
Obviously, a coordinator was simple to implement for two-
SU networks, but in practice a network comprised a large 
number of SUs so that it required significant signaling 
overhead to coordinate successful channel utilization. The 
works in [9] proposed a channel sensing order policy for 
distributed networks. However, this work assumed that SUs 
knew the gain of each channel, and each SU sensed channel 
in descending order of their achievable rates and transmitted 
in the first channel that was sensed free. Unlike [9], the work 
in [13] did not assume that SUs had knowledge of channel 

gains. Moreover, it proposes adaptive  -persistent strategy 

to reduce the collision, but this work assumed that SUs were 
always active. The work in [24] proposed two non-
cooperation game models for multiuser sequential channel 
sensing and access in dynamic cognitive radio networks, and 
proposed a stochastic learning algorithm. 

In general, these works did not take into account the 
spatially distributed characteristic. Therefore, we consider it 
in this paper. Furthermore, in order to reduce the number of 
collisions in multi-user and multi-channel environment, we 
employ no-regret learning algorithm and propose a modified 
no-regret learning algorithm. Compared with no-regret 
learning algorithm, it does not require SUs to know the 
information of other SUs so that it can save lots of network 
resources. On the other hand, the performance obtained by 
modified no-regret learning algorithm is close to no-regret 
learning algorithm. 
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In reminder of this paper, In Section Ⅱ, we present the 
system model and problem formulation. In Section Ⅲ, we 
formulate channel sensing order selection game. In Section 
Ⅳ, we introduce the no-regret learning algorithm and 
propose a modified no-regret learning algorithm. In Section 
Ⅴ, simulation results and discussion are presented. Finally, 
we present discussions and draw conclusions in Section Ⅵ. 

II. SYSTEM MODEL AND PROBLEM MODELING 

A. System Model 

Considering a distributed CR network with one gateway, 

N SUs and M licensed channels. The set of SUs and 

channels is {1,2,..., }N  and {1,2,..., }M .The licensed 

channels are owned by the PUs and can only be used by the 
SUs when they are not occupied by the PUs [13].The PUs 
and SUs are both assumed to use a time slotted system, and 
each PU is present or absent for the entire time slot [7], [10], 
[17]. 

Gateway Small cell PU Communication
Link

interference

 
Figure 1. System model 

The selection of channel for OSA is determined as follow: 
The SUs use the beginning of each time slot to sense the 
channels sequentially in some order to find a free channel. 
We refer to this as the sensing stage. Then the SUs access the 
first free channel, if one exists. We refer to this as the data 
transmission stage [13]. Let   denote the set of available 
sensing orders. Note that the sensing order that a SU 
employs come from a Latin Square (LS), i.e., a M by 

M matrix of M channel indices in which every channel 
index occurs exactly once in each row and column of the 
matrix [25], [26]. 

Before sensing stage, all SUs first select sensing orders 

from LS. Let 
nQ  denote the channel sensing order of SU n . 

If two or more than two SUs select a same channel sensing 
order, they will sense a same free channel and access the 
channel (false alarm probability are assumed to be zero), if 
one exists. Then collision occurs. However, in spatially 
distributed CR networks, this collision occurs only when 
neighbor SUs select a same channel sensing order and access 
a same free channel. In this paper, we define this collision as 

channel sensing order interference. Let
0d denote the 

distance threshold of neighbor SU, and 
nL  denotes the set of 

SUn s neighbor SUs. 
In sensing stage, each time slot is divided into a number 

of sensing steps. The SU senses a different channel in each 
sensing step. If SU finds a free channel in its ith  sensing step 

and transmits data in that channel. However, if all channels 
are found busy, then SU stay silent in the reminding duration 

of that time slot. Let denote the normalized time required 
to sense each channel, so the normalized time for data 

transmission is 1 i . Here, we define the normalized time 
for data transmission as throughput of SU in each time slot, 
as follow: 

 
1 ,

0 ,

i if SU findsa freechanel in ith step

if SU findsall channelsare busy


 


  (1) 

When multiple SUs search multiple potentially available 
channels for OSA, the following three events maybe happen 
in each sensing step: 1) The SU senses a given channel and is 
the only one SU to find it free, then transmits data at the 
remaining time slot. 2) The SU senses a given channel and 
finds that channel is occupied by PU or SU, then it continues 
to sense other channels in next sensing steps. 3) The SU 
sense a given channel and finds it free, then accesses to that 
channel. At the same time, other SUs find that channel free 
and access to that channel too, a collision occurs and the SU 
is not able to transmit until the next time slot. Note that false 
alarm would have effect on channel state (free or busy). Let 

fP  denote the probability of false alarm. For example, Figure 

2 (a)-(c) illustrates four different scenarios for sequential 
channel sensing using sensing orders. 

Means chanel is 
occupied by PU

Means chanel is sensed free 
by two or more than two SUs

Means channel is sensed 
free by only one SU

Means false alarm 
is generated by SU
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Figure 2. (a) Scenario 1 

 Scenario 1: SU 1 and SU 2 select a same sensing order, so they both 

find channel 5 free in step 2 and collide. SU 3 finds channel 1 free in step 2.  
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Figure 2. (b) Scenario 2 

 Scenario 2: SU 1 and SU 2 select the same sensing order but they 

avoid collisions as SU 1 finds channel 2 busy in step 1 and SU 2 generates 

a false alarm in step 1 and finds channel 2 free (in fact, it is occupied by 

PU) , then SU 2 collide with PU. SU1 finds channel 5 free in step 2, SU 3 

finds channel 1 free in step 2. 
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Figure 2. (c) Scenario 3 

 Scenario 3: SU1 finds channel 5 free in step 2. SU2 finds channel 1 

free in step 1. SU3 finds channel 4 free in step 4. 

B. Problem Formulation 

In a distributed CR network with multi-user. Let 

),...,,( 21 nMnnn qqqQ  and 
1 2( , ,..., )m m m mMQ q q q denote the 

sensing order of SU n  and SU m . Inspired by work in [24], 

we define the interference level of SU n  is, 

 
, 1

( ) ( ) (1 )
nl

M

n nl ml q f nm

m m n l

I q q P P 
  

 
   

 
    (2) 

where  is the bitwise XNOR operation, 
nlqP  is the free 

probability of the channel nlq , 
fP  is the probability of false 

alarm, and   is the following indicator function between 

SU n  and SUm , 

 
0

0

1,

0,

nm

nm

nm

d d

d d



 


 (3) 

where 
nmd  denotes the distance from SU n  to SU m ,

0d  is 

also the distance threshold of interference. 

From the SU side, a lower value of ( )nI  is desirable as 

it is expected to achieve higher throughput. From the system 

side, a lower value of the aggregate generalized interference 

level of all the SUs is also desirable. Therefore, we define 

the aggregate generalized interference level of SUs set  

as follow: 

 ( ) ( )n

n

I


   (4) 

Mathematically, the optimal objective is to minimize the 

aggregate generalized interference level, 

 1: max{ ( )}P     (5) 

Generally, this problem 1P  is a challenge, because it is 
combinatorial optimization problem [24]. In the following, 

we will propose a game-theoretic learning framework to 

solve that problem. 

III. CHANNEL SENSING ORDER SELECTION 

GAME 

The fact that the selections of channel sensing orders of 

SUs are interactive motivates us to formulate this problem 

as a non-cooperative game [24]. In this paper, we refer to it 

as channel sensing order selection game and analyze the 

existence of Nash equilibrium. 

A. Channel Sense Order Selection Game  

The channel sensing order selection game is denoted 

as  [ , , ,{ , }]n nn U n   ,
 

where  is the set of 

SUs, 
n
 is the available action set of player n  and 

nU  is 

the utility function of player n . Since the actions of players 

are interactive, the utility function is denoted as ( , )n n nU Q Q
, 

as follow: 

 
, 1

( , , ) ( ) ( ) (1 )
nl

M

n n n n nl ml q f nm

m m n l

U Q Q I q q P P 

  

 
      

 
   (6) 

In non-cooperative game models, each player intends to 

maximize individual utility function [27]. So we can express 

it as: 

 : max ( , , ),d n n nU Q Q n      (7) 

Now we formulate problem 1P  as a non-cooperative game. 

Therefore, we need to analysis the existence of Nash 

equilibrium. 

B. Ayalysis of the Nash Equilibrium 

The properties of the channel sensing order selection 

game is 
d  

characterized by the following theorem. 

Theorem 1 [24]: For any SU set , the channel sensing 

order selection game 
d

 is an exact potential game that has 

at least one pure strategy NE point. Furthermore, any 

optimal solution of problem 1P  constitutes a pure strategy 

NE of the game. 

IV. CORRELATED EQUILIBRIUM AND 

DISTRIBUTED NO-REGRET LEARNING ALGORITHM 

When multiple SUs have to search multiple potential 

available channels for OSA, they face competition from 

neighbor SUs. If two or more than two neighbor SUs select 

a same channel sensing order ignoring the influence of false 

alarm, collision will occur. In order to reduce that collision, 

we employ the no-regret learning algorithm. But the no-

regret learning algorithm requires information exchange. So 

we propose a modified no-regret learning algorithm that 

does not require information exchange. Moreover, the two 

algorithms can both converge to Correlated Equilibrium 

A. Correlated Equilibrium  

The concept of Correlated Equilibrium (CE) was 

proposed by Nobel Prize winner, Robert J. Aumann [28]. 

CE is more general than NE, and the performance of CE is 

superior to NE. The definition of CE as follow. 

Definition 1 [28]: Let  [ , ,{ } ]n n nn
U 

  be a finite 

strategy game, where is the player set , 
n
is the strategy 

set of player n  and 
nU  is the utility function of player n , a 
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probability distribution p  is a Correlated Equilibrium of  

if and only if n  , it holds that  

 ',

'( , )[ ( , ) ( , )] 0

n nn n

t

n n n n n n n

r r

p r r U r r U r r



  

 

    (8) 

We note that every NE is a CE and NE correspond to the 

special case where ( , )n np r r   is a product of each individual 

players probability for different strategies, i.e., the play of 

the different players is independent [28]-[30]. 

B. No-regret Learning Algorithm 

In this subsection, we express the no-regret learning 

algorithm [30]. For any two actions ' ', ,r r LS r r   at time 

T , the regret of player n  for not playing 'r  is, 

 
' '( , ) max{ ( , ),0}T T

n n n n n nR r r D r r   (9) 

where '( , )T

n n nD r r  is, 

 
' '1

( , ) [ ( , ) ( , )]T t t

n n n n n n n n n

t T

D r r U r r U r r
T

 



     (10) 

'( , )T

n n nD r r  is the average payoff that player n  would have 

obtained, if it had played action 'r  every time in the past 
instead of choosing r . The detail of no-regret learning 

algorithm is shown in Table . However, the interference 

level is not too accurate because other SUs have an effect on   

channel state (free or busy) in the equation (2). And we can 

note that the aggregate normalized throughput is inversely 

proportional to the generalized interference level, So we 

redefine the utility function ( , )n n nU r r , as follow 

 
1 ,

( , )
0 ,

n n n

i if player n does not collide with other players
U r r

if player n collides with other players





 


 (11) 

Mathematically, the optimal objective is to maximize the 

aggregate normalized throughput , i.e., 

 max{ ( , )}n n n

n

U r r


    (12) 

For every period T , we define the relative frequency of 

players strategy r  played till T periods of time as follow: 

 
1

( ) { : }T tz r S t T r r
T

     (13) 

where S denotes the number of periods before T that the 

players strategy is r . 

Theorem 2[30]: 
Tz  is guaranteed to converge almost surely 

to a set of Correlated Equilibrium in no-regret learning 
algorithm. 

TABLE I. NO-REGRET LEARNING ALGORITHM INTRODUCTION 

 
Obviously, no-regret learning algorithm requires 

player n  to know its own action and other players actions. It 

is difficult to realize in the distributed networks. Therefore, 

we proposed a modified no-regret learning algorithm. 

C. Modified No-Regret Learning Algorithm 

In this subsection, we develop an algorithm based on no-

regret learning algorithm. We study how the proposed 

modified no-regret learning algorithm can be implemented 

in the distributed networks. Here, we estimate player n s 

utility function value for choosing other strategy 'r as 

follow: 

 

'
' '( )

( , ) ( , ),
( )

n n
n n n n n n n n

n n

p r
U r r U r r all r r

p r
      (14) 

But if ( , ) 0n n nU r r  , the estimation would fail. In the other 

hand, in order to reduce the probability of collision, we 

introduce a penalty mechanism, i.e., set the player n s utility 

function value to -1 when player n  collides with other 

players, as follow, 

 
'

1 ,
( , )

1 ,
n n n

i if player n doesnot collide with other players
U r r

if player n collide with other players





 


 (15) 

Consequently, the average regret payoff can be 

calculated based on only local information. The other steps 

of that algorithm are the same as algorithm 1. Furthermore, 

that algorithm can converge to CE in guaranteed by 

Theorem 2. 

V. SIMULATION RESULTS AND DISCUSSION  

In the simulation, for convenience of discussion, we 

assume that the idle probabilities of all licensed channels are 

the same, i.e., , {1,2,..., }m m M    .The normalized 
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time used to sense each channel 0.05  , and the 

probability of false alarm is 0.05, i.e., 0.05fP   . The 

learning parameter   is 4. 

A. Coveragence Property 

In this subsection, we study the convergence property of 

the proposed no-regret learning algorithm in the distributed 

networks where any two SUs are neighbor users. It is 

assumed that there are nine channels and ten users, i.e., 

9M  and 10N  .The probability of any channel free is 1, 

i.e., 1  .The convergence of throughput for two algorithms 

is shown in Fig.3. It is noted in the figure that two 

algorithms finally converge to a pure strategy. Moreover, 

modified no-regret learning algorithm requires 10 time slots 

more than no-regret learning algorithm. 
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Figure 3. The convergence property of two algorithms, no-regret learning 

algorithm requires about 10 time slots, but modified algorithm requires 

about 20 time slots. ( 9M  , 10N  , 1  ) 

B. Throughput Performance Comparision 

In practice, the SUs randomly spread in the spatially 

distributed networks. Therefore, we take that consider into 

our work. Moreover, we illustrate the spatially distributed 

networks topology in Figure.4, ten SUs randomly 

distributed in the area of 100 m100 m, and the distance 

threshold of interference is 30m, i.e.,
010, 30N d  . 
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Figure 4. the topology of networks, the circle point denotes SUs and its 

radius of coverage is 10m, the dotted line represent interference between 

SUs. 
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Figure 5. Throughput comparison of three algorithms in small-scale 

spatially distributed networks. ( 9M  , 10N  , 1  ) 

Under this network topology, we compare the 

throughput performance of three algorithms including no-
regret learning algorithm, modified no-regret learning 

algorithm and random selection algorithm. In the random 

selection algorithm, each player randomly select strategy. 

The comparison results of the network throughput as shown 

in Fig.5. There are ten SUs and nine channels, we call this 

small-scale networks because of the small number of SUs. 

At the same time, the probability of any channel free is 1, 

i.e., 1  . It is noted in the Fig.5 that the normalized system 

throughput of modified no-regret learning algorithm is 

almost equal to no-regret learning algorithm. But compared 

with random selection algorithm, the throughput 

performance generated by two no-regret learning algorithms 

increases more than 10%. 
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Figure 6. Throughput comparison of three algorithms in medium-scale 

spatially distributed networks. ( 9M  , 20N  , 1  ) 
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Figure 7. Throughput comparison of three algorithms in large-scale 

spatially distributed networks. ( 9M  , 50N  , 1  ) 
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Here, we also compare the throughput performance of 
three algorithms in medium-scale (the number of SUs is 20, 
the area is 200 m200 m) and large-scale (the number of 
SUs is 50, the area is 500 m500 m) networks. Meanwhile, 
other parameters keep constant. Fig.6 and Fig.7 show the 
throughput performance in medium-scale and large-scale 
networks. We can also see that the throughput performance 
by employing the two no-regret learning algorithms are 
obviously better than random selection algorithm. 

VI. CONCLUSION 

In this paper, we studied the problem of multi-user 
sequential channel sensing and access in spatially distributed 
CR networks. In order to solve the problem, we modeled it 
into a non-cooperative game and defined a generalized 
interference metric. We established an optimization objective: 
maximize the aggregate normalized throughput. Considering 
that no-regret learning algorithm that required information 
exchange, we proposed a modified no-regret learning 
algorithm that did not require information exchange, and 
proved that two algorithms can both converge to CE. From 
the simulation results, the throughput performance of two 
algorithms was obviously better than random selection 
algorithm. In the future, we plan to consider users 
requirements in CR networks. 
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