

Reversible Capture of CO₂ by Cucurbit[7]uril Absorbent

Li LIU

Dalian University of Technology Dalian, 116024, China e-mail: lliu@dlut.edu.cn

Abstract— Traditional amine absorbents for CO_2 are oftentimes corrosive to equipment and degrade through oxidation, thus severely restricting the wide application in CO_2 capture. Herein, a supramolecular approach to CO_2 capture by cucurbit[7]uril (CB[7]) complex was developed. NH₂(CH₂)₆NH₂⊂CB[7] complex can convert CO_2 to bicarbonate product. Furthermore, the CB[7] complex can be reused to absorb CO_2 over 5 times in solid state, thereby providing a green absorbent to CO_2 with regard to high stability, non-corrosiveness and convenient transportation.

Keywords- Carbon dioxide; Capture; Cucurbituril; Absorbent

I. INTRODUCTION

CO₂ is one of the major greenhouse gases, and huge amounts of CO₂ are released into the air upon the burning of fuels, such as oil, coal, wood and natural gas. As a result, CO₂ is accumulating faster in the atmosphere than the earth's natural processes, i.e., plants and aqueous resources, can absorb. On the other hand, CO₂ can be used as an important carbon resource. Therefore CO2 fixation becomes a very attractive subject not only due to increasing environmental concerns, but also in view of carbon resource utilization [1]. It is well-known that CO₂ reacts with amines rapidly at room temperature and can be released easily by gentle heating (60-110 °C) or simply by addition of HCl or TFA [2]. This reversible conversion leads to controllable capture and release of CO₂ from the air. However most of the amines are corrosive to equipment and degrade through oxidation, thus severely restricting their wide application in CO₂ capture. To solve the problems, amine-modified solid sorbents supported on silica gels [3], molecular sieves and polymers [4] have been designed and synthesized.

Cucurbit[n]urils (CB[n], n = 5-10) are cyclic oligomers of glycoluril with an interior hydrophobic cavity and polar carbonyl groups surrounding the two identical portals [5]. They can accommodate cationic and neutral guests through ion-dipole interactions, hydrophobic effect or hydrogen bonds [6,7]. Mock firstly reported that 1,3-dipolar cycloaddition reaction could be accelerated by a factor of 5.5×10^4 under the influence of CB[6] [8]. Afterwards, applications of CB[n] as catalyst were investigated in a variety of reactions, such as hydrolysis reaction, solvolytic reaction, desilylation reaction, thiol-disulfide interchange reaction, oxidation reaction, and photoreactions [9]. So far,

application of CB to convert CO₂ has been rarely investigated [10].

Based on the unique characteristics of recognition and assembly for supramolecular macrocyclic host structures, amine-modified calixarene [11] and crown ethers [12] have been designed for construction of novel nanostructures and materials. In this work, without resort to the chemical modification step of amino group, a supramolecular approach to CO_2 capture catalyzed by CB[7] was developed.

II. EXPERIMENTAL

A. Materials and Apparatus

 1 H and 13 C NMR spectra were recorded on Bruker DRX-400 spectrometer for 1 H at 400 MHz and for 13 C at 100 MHz. The highly pure CO₂ (99.999%) was obtained from local supplier. CB[7] was synthesized using a published procedure [13] and characterized by NMR prior to use. NH₂(CH₂)₆NH₂ \subset CB[7] complex was readily prepared by mixing solid CB[7] (100 mg) with excess of 1,6-hexanediamine (2.000 g) at 50 $^{\circ}$ C for 3.5 h. After filtration, the uncomplexed amine was washed out thoroughly with methanol. The white powder was dried under vacuum at 70 $^{\circ}$ C for 3 h (49% yield based on CB[7]).

B. CO₂ Reaction

 $NH_2(CH_2)_6NH_2$ or $NH_2(CH_2)_6NH_2$ CB[7] complex (0.004-0.05 M) was dissolved in D_2O in a 5 mm NMR tube. CO_2 was then bubbled through the solution at 25 $^{\circ}C$ with a flow rate of 10 mL/min as regulated by flow meter. The CO_2 reactions were monitored by ^{1}H and ^{13}C NMR spectra.

C. CO₂ TPD experiment of NH₂(CH₂)₆NH₂CCB[7] Complex

The multi-cycle temperature-programmed desorption (TPD) of CO_2 was conducted in an AutoChem 2910 unit (Micromeritics) equipped with a thermal conductivity detector (TCD). The sample cell was loaded with ca. 60 mg of $NH_2(CH_2)_6NH_2 \subset CB[7]$ complex. After it was heated in flowing helium to $50^{\circ}C$, a CO_2 flow was introduced to the sample cell for CO_2 adsorption for 1 h. Then the sample was swept using flowing helium to remove the weakly adsorbed CO_2 . Afterwards the TPD experiment was carried out from 50 to 150 °C with a heating ramp of 5 °C/min, then kept at 150 °C for 15 min. After temperature was cooled to 50 °C, the next run for CO_2 adsorption and TPD experiments were performed following the same procedure.

III. RESULTS AND DISCUSSION

The NH₂(CH₂)₆NH₂⊂CB[7] complex was synthesized and characterized by ¹H NMR (Figure 1), wherein 1:1 host-guest ratio could be derived from the integration and the resonance signals assigned to amine moving up field indicate their positioning within the cavity of CB[7]. For reaction of NH₂(CH₂)₆NH₂⊂CB[7] complex with CO₂ in aqueous solution, the new resonance signal on ¹³C NMR spectrum at δ 159.8 ppm was assigned to bicarbonate as the only product of CO₂ fixation, while carbamate product was not detected (Figure 2b).

Figure 1. ¹H NMR spectra of NH₂(CH₂)₆NH₂ (bottom) and NH₂(CH₂)₆NH₂⊂CB[7] (top) in D₂O.

The bicarbonate product of $(NH_3^+(CH_2)_6NH_3^+ \subset CB[7]) \cdot 2HCO_3^-$ remained stable in solution even after heating at 90 °C for 10 h. Through rotary evaporation to remove water, $(NH_3^+(CH_2)_6NH_3^+ \subset CB[7]) \cdot 2HCO_3^-$ powder was obtained, whereas CO_2 could be released by heating at 150 °C for 3 h (Figure 2).

Figure 2. ¹³C NMR spectra of (a) NH₂(CH₂)₆NH₂CB[7], (b) after bubbling CO₂ into NH₂(CH₂)₆NH₂CB[7], (c) after heating (NH₃+(CH₂)₆NH₃+CB[7])·2HCO₃-powder at 150 °C for 3 h (D₂O).

Furthermore, in order for the practical application of CB[7] complex as CO_2 absorbent, multi-cycle temperature-programmed desorption (TPD) of CO_2 on $NH_2(CH_2)_6NH_2 \subset CB[7]$ in the solid state has been

undertaken. As illustrated in Figure 3, the reusability of CB[7] complex for CO₂ capture have been demonstrated over 5 cycles, exhibiting high reversibility and stability of CB[7] complex to absorb CO₂.

Figure 3. Five-cycle TPD profiles of CO_2 on $NH_2(CH_2)_6NH_2 \subset CB[7]$ (from 50 to 150 °C with a rate of 5 °C/min, then kept at 150 °C for 15 min).

IV. CONCLUSIONS

In summary, traditional amine absorbents for CO₂ are oftentimes corrosive to equipment and degrade through oxidation, thus severely restricting the wide application in CO₂ capture. Herein, a supramolecular approach to CO₂ capture catalyzed by CB[7] was developed. NH₂(CH₂)₆NH₂⊂CB[7] complex can convert CO₂ to bicarbonate product. Advantageously, the CB[7] complex can be reused to absorb CO₂ over 5 times in solid state, thereby provides a green absorbent to CO₂, regarding high stability, non-corrosiveness and convenient transportation.

ACKNOWLEDGMENT

This project was supported by the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (No. 21003123), and a grant from Advanced Programs for the Returned Overseas Chinese Scholars, Ministry of Human Resources and Social Security.

REFERENCES

- C. S. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, *Catal. Today* 115, 2 (2006).
- [2] W. Boettinger, M. Maiwald and H. Hasse, Online NMR spectroscopic study of species distribution in MEA-H2O-CO2 and DEA-H2O-CO2, Fluid Phase Equilib.263, 131 (2008).
- [3] T. Tsuda, T. Fujiwara, Y. Taketani and T. Saegusa, Amino silica-gels acting as a carbon-dioxide absorbent, *Chem. Lett.* **2161** (1992).
- [4] R. A. Khatri, S. S. C. Chuang, Y. Soong and M. Gray, Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture, *Energy & Fuels* 20, 1514 (2006).
- [5] E. Masson, X. X. Ling, R. Joseph, L. Kyeremeh-Mensah and X. Y. Lu, Cucurbituril chemistry: a tale of supramolecular success, RSC Adv. 2, 1213 (2012).

- [6] L. Liu, N. Zhao and O. A. Scherman, Ionic liquids as novel guests for cucurbit[6]uril in neutral water, *Chem. Commun.* 1070 (2008).
- [7] N. Zhao, L. Liu, F. Biedermann and O. A. Scherman, Binding studies on CB[6] with a series of 1-alkyl-3-methylimidazolium ionic liquids in an aqueous system, *Chem.-Asian* J.5, 530 (2010).
- [8] W. L. Mock, T. A. Irra, J. P. Wepsiec and T. L. Manimaran, Cycloaddition induced by cucurbituril - a case of pauling principle catalysis, J. Org. Chem. 48, 3619 (1983).
- [9] B. C. Pemberton, R. Raghunathan, S. Volla and J. Sivaguru, From containers to catalysts: supramolecular catalysis within cucurbiturils, *Chem.-Eur. J.* 18, 12178 (2012).
- [10] P. Li and L. Liu, Application of organic macrocyclic supramolecular structures on adsorption and conversion of carbon dioxide, *Prog. Chem.*22, 1940 (2010).
- [11] H. Xu and D. M. Rudkevich, CO2 in supramolecular chemistry: Preparation of switchable supramolecular polymers, *Chem.-Eur. J.*10, 5432 (2004).
- [12] V. Stastny and D. M. Rudkevich, Separations using carbon dioxide, J. Am. Chem. Soc. 129, 1018 (2007).
- [13] A. Day, A. P. Arnold, R. J. Blanch and B. Snushall, Controlling factors in the synthesis of cucurbituril and its homologues, *J. Org. Chem.* 66, 8094 (2001).