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Abstract—Hyperspectral unmixing is an important 
technique for hyperspectral image analysis. In this paper, we 
took Airborne Visible Infrared Imaging Spectrometer 
(AVIRIS) hyperspectral imagery as dataset to monitor oil 
spills. The information of oil spills was retrieved through 
image preprocessing, minimum noise fraction (MNF) feature 
extraction, endmember extraction (pure pixel index (PPI), 
unsupervised orthogonal subspace projection (UOSP)) and 
fully constrained least squares (FCLS) abundance estimation. 
In the steps of endmember extraction, the experiment 
measured endmember spectra of oil and water were used as 
reference spectra. Then we compared the endmember 
spectra extracted in the image to the measured spectra by 
the spectral angle. At last the FCLS abundance estimation 
was carried on to evaluate the endmember extraction quality. 
The result demonstrates that the unsupervised OSP-FCLS 
model is better than supervised PPI-FCLS endmember 
extraction.  

Keywords-remote sensing; hyperspectral unmixing; oil 
spill; endmember; abundance estimation 

I. INTRODUCTION 

With the rapid growth in oil consumption and 
transportation at sea in recent years, it has brought the oil 
spill accidents frequently, which are harmful to marine 
ecological environment. Nowadays oil spill monitoring 
has become the focus of current research topics. In terms 
of marine oil pollution monitoring and management, it 
needs to be accurate, quick and reliable. With the 
hyperspectral technology developments, application of 
hyperspectral remote sensing oil spill detection has 
received highly attention, which is good at the quantitative 
monitoring on oil film type, thickness, area and scale. 
Although hyperspectral images could provide rich spectral 
information, because of the lower spatial resolution, the 

mixed pixel phenomenon is common. The mixed pixels 
are an important reason to affect the classification 
accuracy of remote sensing images and the effect of target 
detection. During to the classification of remote sensing 
images and information of different features, it is difficult 
to give a specific category of mixed pixel. Different 
classifiers and even the different parameters of the same 
classifier may make a difference in the category of a 
mixed pixel. Therefore, it is an important content in the 
study of hyperspectral remote sensing to solve the mixed 
pixel problem. P. Sidike compared the complete spectral 
unmixing and partial spectral unmixing for the marine oil 
spill detection [1]. D. Sykas presented the fully 
constrained network based on unmixing method to 
estimate the oil spill thickness [2]. 

Reference spectra of oil and water are measured by 
ASD spectrometer in this paper, and compared with the 
results of spectra extracted from the hyperspectral image 
endmember. The PPI model and UOSP model are used to 
extract the endmember. Then, the abundance map is 
obtained through the FCLS method. Qualitative and 
quantitative evaluations are combined with visual analysis 
and root mean square error (RMSE) of the hyperspectral 
unmixing results, the flowchart is shown in Fig.1. 
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Figure 1. Flowchart 

II. REFERENCE ENDMEMBER SPECTRA 

COLLECTION 

Crude oil (Gulf of Mexico oil type) was chosen in the 
experiment as the reference oil. The experiment was 
equiped with the United States ASD FieldSpec®3 
spectrometer and a drums simulating the infinite deep 
water environment about 60cm in depth, 50cm in diameter, 
coated with black matte paint. The measurement site was 
located on the roof surrounding no higher buildings and 
no stray light. A cloudless sky, weak wind was necessary 
to ensure the water was in a static state. The endmember 
spectra were obtained through data preprocessing 
(excluding abnormal curve, spectral reflectance 
calculation through the target and the brightness value of 
the reference plate). There measured reflectance spectral 
curves of different oil thickness. As is shown in Fig. 2, the 
water has the lowest value. The thinner the oil film 
thickness, the more like the shape of the water spectrum 
curve. At the wavelength of 533nm, there is an overall 
change from convex to concave. When the oil film 
thickness reaches 1500μm-2000μm, there is also a sharp 
peak at wavelength of 783nm [3]. Because there are many 
water vapor absorption bands in the 950nm-2300nm range 
and there is no obvious difference between oil and water, 
this range was excluded. 

 
Figure 2. Measured spectra of crude oil 

III. ENDMEMBER EXTRACTION 

In the present study, Airborne Visible Infrared 
Imaging Spectrometer (AVIRIS) hyperspectral imagery 
was served as the dataset, digitized in 12bit. It has a 
spatial resolution of 15m and 224bands. Among them, 
band 1-5, 107-113, 150-166, 221-224 were absorpt by 
water vapor and removed from the data. The remaining 
158 bands were taken as data sources for spectral 

unmixing. A 418*839 pixel AVIRIS image was acquired 
on 13th May, 2010, covering an area from 28°4'42.75"N 
to 28°6'55.90"N, 88°42.40"W to 88°1'55.93"W. The 
image was preprocessed by atmospheric correction, 
spectral subset, spatial subset, and bad line repair.  

Because the spatial resolution of hyperspectral image 
is generally low, there are many features in a pixel. 
Endmember is equivalent to a pixel in the subpixel, 
containing only spectral information of one feature. 
During the hyperspectral unmixing, endmember 
abundance can described quantitatively how much 
endmember in this pixel and the percentage of each 
endmember in this pixel. 

Endmember is generally derived from two methods: 
first, the reference endmember, from the standard spectral 
library or the actual measurement of surface features; two, 
image endmember, from the image by the supervised or 
unsupervised to get the endmember of the spectrum. In 
this paper, we used supervised purity index pixel method 
and unsupervised subspace projection orthogonal method 
to obtain the image endmember. 

A. PPI 

By far, the most commonly used endmember 
extraction tool is PPI, which searches for vertices that 
define the data volume in n-dimensional feature space. 
PPI algorithm is based on linear spectral mixture model 
geometry. As the endmember is the terminal vertex of the 
image feature space. In the feature space, several lines 
randomly generated, and all pixels were projected to each 
line. Two points in the projection on extreme edge was the 
end point of the projection element. For each pixel, pure 
pixel index was defined which records the times being the 
end points of the projection. Then the larger the pure pixel 
index is, the higher possibility of endmember [4]. 

Because of the hyperspectral imagery huge band 
numbers, the computation is too large and the noise is 
high, which leads to the time consuming, the difficulty of 
computation, and the redundancy. Before the application 
of PPI endmember extraction, the feature extraction was 
used to reduce the dimensions of the images. 

Common feature extraction methods include MNF 
transform and principal component transform (PCA), etc. 
MNF is similar to PCA in that involves two cascading 
PCA transformations, where the first estimates a noise 
covariance matrix to decorrelate and rescale the noise in 
the data. The next is a standard PCA of the noise-reduced 
data. The assumption here is that the image endmembers 
lie within the first few principal component axes, whereas 
the remaining axes are related to noise. In order to further 
spectral processing, the dimensions of the useful 
information is determined by examining the final 
eigenvalues and the related MNF images. 

Input: R denotes dimension reduction image, m 
denotes endmember number, kmax denotes maximum 
iterations. 

Output: E  denotes endmember after dimension 
reduction. 

Step 1 Define the ppi set 
1{ }n

i ip 
,here 

ip ＝0, i . 

Step 2 For each k=1……,kmax, execute Step 3 and Step 
4. 

Step 3 Generate unit random vector and calculate the 
projection of the image in the direction of βk

, '
kR =βk

R . 
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Step4 Search for the location of the maximum 
(  'argmax ki max R ) and minimum (  'argmin ki min R ) of 

'
kR . And update ppi value, 1

max maxi ip p  , 1
min mini ip p   

Step5 In the set of 
1{ }n

i ip 
, if nonzero value<m, then all 

the pixels with nonzero ppi are endmember, that is  
  | 0, 1,2, ,i iE x p i n    , else set the endmember 

with the top m ppi. 

In this paper, we chose the 15 dimensions of the MNF 
transform as the effective input data of PPI processing. 
Through repeated experiments, we set the iterations as 
5000 times, the endmember number as three. That was oil, 
water and cloud. The total number of pixels in the study 
area was 265. The above experiment was completed in the 
ENVI software. PPI was a supervised endmember 
extraction method here. The extraction results are shown 
in fig.3. 

 
Figure 3. PPI endmember spectra 

B. UOSP 

This paper also presented an unsupervised method to 
extract endmember called UOSP, which overcame the 
shortcomings of traditional techniques to require a priori 
spectral knowledge [5].  

Set r as the pixel vector of hyperspectral image [6]. 
Set S as the endmember spectral matrix and α  as m 
dimension vector. Define n as the random noise. The 
linear mixing spectral model can be created as in (1). 

 r=Sα +n (1) 

And divide S into interested signal d and uninterested 
U, S= [d, U], then (1) can be written as in (2). 

 α αd Ur d U n     (2) 

The endmember's position is thought to be at the 
angular point of an image. Some automatic endmember 
extraction methods are based on convex polygon 
algorithm condition. Although it is difficult to find the 
whole endmember matrix S, it is easy to search one of the 
endmembers in the image. 

Set convex set Ω as the hyperspectral cube, if 

 1ξ arg Ωmax＝ , then 1ξ is the angular point of Ω . Else 

there exists Ωx , Ωy , make  1ξ  1xf f y ＝ ,  0,1f  . 

That is, there must be a larger than 
1ξ  between x and y, 

which contradicts with  1ξ arg Ωmax＝ . So regardless of 

the noise, in the image cube the maximum vector of the 
pixel is an endmember vector, which is the brightest one. 

When the SNR of the image is low, the problem 
comes to determine whether 

1ξ represents noise or 

endmember. So suppose the endmember in the space is in 
a certain distribution and accumulation. Set 

1ξ  as  ,i iX Y , 

window in some size was centering on 
1ξ , and inspect the 

pixels similar with 
1ξ . If the number is larger than some 

value i, then 
1ξ  is thought to be endmember vector, else to 

be noise.  
By searching for the maximum pixel vector in the 

image data, we can always find one of the endmember 
spectral signal 

1ξd  , and use projection matrix 
dP  to 

remove the signal d in the image. 

   1T T
dP I d d d d

     (3) 

Once the signal d is known,  dP  is determined. And d 

is always found in the dataset Ω .So the projection matrix 
can be calculated without using U matrix. 

According to (2) and (3),  

 αd d U dP r P U P n      (4) 

On the right side of (4), there is no more signal d, 
which not only removes d from the original image, but 
also compresses the noise into 

dP n . 

Notice the right side 
dP r  is already known, take 

dP r  

as a new convex set Ω̂ , then another  2 arg Ω̂max ＝  can 

be found, 
2  is another endmember vector. By now the 

projection matrix can be calculated as in (5). 

   1
T T

d
P I d d d d

  
      (5) 

Where  1 2ξ , ξd  , and so on, the j+1 times projection 

matrix  ˆ ˆ ˆ ˆi
T TP I d d d d


   ,

1 2ξ , ξ , , ξˆ
jd     . The 

end condition is to get the specified number of the 
endmember, or by the specified RMSE. So that we can get 
all K endmember vector, that is, the endmember spectral 
matrix S. 

In this paper, the UOSP method was used to 
automatically select the endmember spectrum. The 
window size was selected as R = 15, the total number of 
similar pixels in the window was W= 120, a total of 
iterations was set to 5, the decomposition of the error is 
0.0008. The following table is the intermediate result of 
the iterative calculation. 
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TABLE I.  ITERATIVE CALCULATION 

 
Iteratio

n1 
Iteratio

n2 
Iteratio

n3 
Iteratio

n4 
Iteratio

n5 

coordinat
e 

(30, 18) (57, 3) (84, 108) 
(268, 
126) 

(129, 
177) 

Similar 
pixels 

181 159 152 148 167 

RMSE 0.6954 0.1866 0.0128 0.0029 0.0008 

As is shown in Table I, the relative error of each 
iteration is reduced sharply, and the spectral curves of 
three kinds of features are obtained, the UOSP 
endmember spectra are shown in Fig. 4. 

 
Figure 4. UOSP endmember spectra 

C. Evaluation of Endmember Extraction 

Due to external conditions, such as imaging and time 
imaging condition is different, the absolute value of 
measured reference endmember spectra and hyperspectral 
endmember spectra varied widely. But the basic shape of 
the curves is similar. At the wavelength of 773nm there 
are both several reflection peaks. So the evaluation 
method was based on spectral angle. There are similar 
characteristics among the reference spectra of different 
thickness oil, so the thickness of 10μm oil film and the 
maximum thickness of 2000μm were used as the 
reference spectra. The spectral angle evaluation is shown 
in the Table II. 

TABLE II.  SPECTRAL ANGLE OF REFERENCE SPECTRA AND ENDMEMBER 
SPECTRA EXTRACTED BY PPI AND UOSP 

Feature PPI UOSP 

Oil(10μm) 0.55 0.49 

Water 0.42 0.45 

Oil(2000μm) 0.36 0.28 

Water 0. 42 0.45 

From the table, the spectral angle between reference 
spectra and UOSP endmember spectra was smaller than 
that of PPI, so the accuracy is higher. But the result of 
water extraction was opposite. Overall, the oil spill film 
thickness in the image was closer to 2000 μm. 

IV. FCLS ABUNDANCE ESTIMATION 

The existing spectral mixture models mainly include 
linear and nonlinear models. Linear spectral mixture 
model is to assume that the spectra is a linear combination 
of pure independent endmember. Its purpose is to get the 

endmember proportion contained in the mixed pixels by 
analysis and calculation, called abundance estimation. 

Fully constrained least squares abundance estimation 
is the combination of sun-to-one constrained least squares 
and non-negative constrained least squares [7]. The FCLS 
has the highest accuracy. It could be described as 
following. 

The mixed pixel decomposition could be calculated as 
in (6). 

   1
α T T

ls S S S r


  (6) 

The fully constrained condition is 
1

1
k

i
i

T


  and 

0iT  . The difficulty is to ensure 0iT  . 

1T

S
M

 
  
 

,  1 1,1, ,1T   ,ρ
1

r 
  
 

, a k-dimension vector 

 1 2 kβ , , ,U U U  ,
i 0U  is introduced, to construct a 

Lagrange multiplier equations as in (7). 

      T1
ρ α ρ α λ α β

2
J M M      (7) 

Under the condition of α β , 

  T T0 α ρ λ 0
α cls

cls

J
M M M


    



 (8) 

Where cls denotes constrained linear spectral. 
So the iterative equations are derived 

   1Tα α λcls ls M M


   (9) 

  λ ρ αT
clsM M   (10) 

As in (9) and (10), α cls
 and λ  could be calculated. 

Two methods of endmember extraction abundance 
map are shown in Fig.5 and Fig.6. The pixel value 
represents the endmember proportion of the pixel. The 
higher the level of gray value, the higher accuracy 
estimation. At last the root mean square error method was 
used to evaluate the abundance results. 

The oil abundance by UOSP was larger than that by 
PPI. And in the middle of the image, there was a piece of 
cloud where the pixels were with low gray value 
estimated correctly by UOSP. Since large area of the 
bottom was oil, the water abundance in the bottom of the 
image was also correct by UOSP. In the abundance 
estimation of haze, the UOSP method was wrong to 
regard some oil as haze in the bottom right corner. The 
RMSE also showed the UOSP-FCLS was better than PPI-
FCLS. The RMSE of UOSP was 106.54 relative to 148.42 
of PPI.
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a. Oil b. Water a. Oil b. Water 

c. Haze d. RMSE c. Haze d. RMSE 
Figure 5. PPI-FCLS Abundance Estimation Figure 6. UOSP-FCLS Abundance Estimation

 

V. SUMMARY 

This paper compared oil and water endmember 
extraction method of PPI and UOSP to the measured 
reference spectra. Endmember evaluation is an important 
task for analysis of hyperspectral unmixing. Through the 
unsupervised OSP endmember extraction, the abundance 
estimation was more reliable than the supervised PPI 
endmember extraction. 
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