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Abstract—Building occupant behavior has a great impact on 
the energy consumption in buildings. Indirect conservations 
are achieved through information transmission of energy 
efficiency measures from one occupant to his/her neighbours. 
Within the social network, energy use information can 
propagate through social networks and influence an 
occupant’s energy consumption decisions. This paper develops 
a mathematical model for occupant energy consumption 
behavior and network information transmission. A case study 
of a residential building with one hundred and fifty occupants 
is used to illustrate the impact of occupants on the rest of their 
network in transferring information. Simulation results show 
that social interactions can improve energy efficiency and 
consequently reduce energy consumption of the whole building. 

Keywords-agent-based modeling; building energy 
comsumption; social network; occupant behavior 

I. INTRODUCTION 

With concern growing about pollution, global climate 
change, and national security related to dependence on fossil 
fuel resources, much emphasis is being placed on reducing 
activities that contribute to the emission of greenhouse gases, 
other criteria pollutants and reducing our dependence on 
non-renewable fuels [1]. The building sector is one of the 
largest consumers of energy and accounts for 41.3% of 
consumption and 36% of related CO2 emissions [2]. In 
residential buildings, occupants generally have a high degree 
of control over their energy consumption through their 
actions (e.g. setting temperature cooling and heating points, 
light and equipment use). Previous research has shown that 
interactions among residents in a network increase energy 
savings which may be more cost effective than physical 
renovations of their buildings [3,4]. However, more 
comprehensive studies on the relationship between social 
networks and energy use are still needed. Therefore, the goal 
of this paper is to develop an agent-based model to emulate 

the energy consumption behavior of building occupants in 
social networks. 

II. BACKGROUND 

Energy conservation can be achieved through three 
aspects: (1) designing or retrofitting buildings to be more 
efficient, (2) enhancing building systems operation, and (3) 
occupants and their impact on building energy consumption 
[5-7]. Understanding that occupant behavior can 
substantially contribute to energy consumption in buildings, 
researchers have recently begun investigating how occupants 
interact and influence the energy use behavior of each other. 
For example, Göckeritz et al. proposed that the energy 
conservation behaviors of others have a strong positive 
correlation with an individual’s conservation actions [8]. 
However, to date relatively little work has been done 
modeling the impact of social networks on building 
occupants’ energy use behavior. 

In the limited prior research, agent-based modeling 
(ABM) has been used as a platform to model occupant 
behavior. ABM is an analytical method that allows the 
modeling of heterogeneous agents in various types of 
environments with explicit decision rules [9]. These 
attributes make ABM particularly well-suited for modeling 
and understanding complex adaptive systems. In buildings, 
agents (i.e., occupants) are not homogeneous, are adaptive, 
and communicate through a complex system of social 
relationships. 

III. MODEL DEVELOPMENT 

The model consists of three submodels: agent norm, 
network generation, and building energy calculation and 
convergence. 
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A. Agent Norm 

Based on the information participants received in the 
pilot study, we constructed an algorithm for an individual to 
follow in simulation as the agent norm. This submodel 
determines how much each agent (occupant) changes their 
energy use during each time step and is based on established 
social influence network theory. The influence from other 
agents can be either positive, to use less energy or negative, 
to use more energy. According to the social influence 
network theory, in a social network with N agents, for each 
time step, every agent calculates their new energy use (in 
W/person/day) taking into account the influence they 
received from the other agents of the social network using 
the following equation [10]: 
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where ( 1)t
iy   is agent i’s energy use at time t+1, ( )t

iy  is agent 

i’s current energy use, (1)
iy  is the initial energy use of agent i, 

N is the number of agents (occupants) in the network, wij is 
the weight of the influence of agent j on agent i ( 0 1ijw   

and 1ijj
w  ), and ai is the susceptibility of agent i to the 

influence of others ( 0 1ia   and 1i ija w  ). Social 

influence network theory rests on a model of how individuals 
cognitively integrate conflicting opinions, but the outcome of 
this process depends on the social structure in which the 
process occurs. 

The structural measure of an agent’s susceptibility to 
influence is based on the agent’s centrality in the 
communication network. Centrality is a well-established 
indicator of interpersonal influence, and the most elementary 
measure of centrality is the indegree of the agent for the 
measure of susceptibility: 
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where di is the indegree of agent i, and d is the mean 
indegree of the agent. 

The weight of interpersonal influence of one agent on 
another is calculated by considering the susceptibility of the 
agent and conditions that allow for likely interpersonal 
interaction, shared connections (i and j both share ties with k) 
and reciprocity (i and j share a connection) as given in (3): 
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where cij is the estimate of the probability of an interpersonal 
connection between agent i and agent j and i ≠{j, k}. 

B. Network Generation 

In this agent-based simulation, the environment in which 
occupants act is their social network. We assume that one 
agent’s energy use can affect the energy use of other agents 
with varying degrees of probability. The quantity of 
consumption by neighbors of an agent’s peer network may 
have a strong influence on modifying a given agent’s energy-
saving behavior. On one hand, the agent’ behaviors can 
actively change the energy consumption patterns in the 
whole network. On the other hand, once the environment 
changes, the feedback of changes will inversely affect 
agent’s decision making processes. 

There are four basic architectures for social networks: 
regular network, random network, small-world network, and 
scale-free network [11]. In this simulation, the random graph 
theory is used to generate complex networks (Fig. 1). Since 
1950, large networks with no apparent design principles 
were described as random graph, which was proposed as the 
simplest and most straight forward realization of a complex 
network. A random network is a theoretical construct which 
contains links that are chosen completely at random with 
equal probability. The random network is highly disordered 
and low clustering, meanwhile its degree distribution is 
defined by Poisson distribution [11]. Some recent study 
indicate that large network, for example, World-Wide Web, 
Internet, metabolic and protein networks, have the scale-free 
property (the degree distribution follows a power law). 
However, since the residential network investigated in this 
study is relatively small compare to other networks, we only 
adopt random graph model without scale-free property. 

 
Figure 1.  Graphical representation of a random network. 

In this simulation, a building with N occupants can be 
represented by N nodes on a network. The interactions 
between the nodes are represented by edges on the network. 
The physical distance between each household is not 
considered in this paper. We assume that two nodes 
(occupants) are said to be connected when there is a mutual 
acknowledgement of friendship between them. In addition, 
we consider an undirected network where the path between 
two nodes is represented with di,j = dj,i and there is no self 
connection, that is di,i = 0. The random network is created 
according to the method prescribed in Erdős and Rényi [12]. 

1) Building Energy Calculation and Convergence 
The total building energy use (in W/day), BE, is 

calculated in this submodel using (4), which combines the 
updated energy uses of all building occupants as of the 
current time step: 
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When the standard deviation of energy use between all 
agents falls below 1 watt and when the rate of change of the 
total building energy use mean and standard deviation over 
the last 50 time steps relative to the current time step has 
changed by less than 0.05 watts for each, the model is 
considered to have reached convergence. When convergence 
occurs, the simulation ends. Otherwise, the model moves to 
the next time step. 

IV. SIMULATION AND RESULTS 

In accordance with the objectives of this paper, a case 
study is conducted to verify the model behavior. A network 
of one hundred and fifty occupants is considered in this study. 

Fig. 2 reflects a single simulation run of the dynamic 
energy consumption of twenty agents in the simulated 
network. Each agent can make decisions separately based on 
its own environment, although we assume that these 
decisions will affect decisions made by its neighbors in the 
peer network.  

The percentages of the total expected energy use savings 
for twenty agents and the whole building are given in Fig. 3, 
which shows the percentage savings after thirty days. The 
results show that agent 3 has the highest percentage of 
energy use savings after thirty days while the energy 
consumption of agent 15 increases very greatly. In addition, 
the energy use of the whole building reduces by 20.7%. 

 
Figure 2.  Agents’ energy use performance. 

 
 
 

Figure 3.  Energy use savings of agents and building. 

The purpose of this simulation is to explore the effect of 
social network on occupants’ energy saving behavior. In 
order to achieve this goal, we built an agent-based decision 
model to estimate such behaviors. However, this model 
needs further empirical validation from experimental data. 

V. CONCLUSIONS 

This paper presents an agent-based model that explores 
the relationship between social networks in buildings and 
energy use behaviors of building occupants. In existed 
document, energy conservation is seldom investigated at the 
social network level. Although experimental research 
recently has found that sharing energy use information 
through social networks promotes energy saving by building 
occupants [4, 13]. However, the characteristics of social 
networks vary from building to building, which means that 
the relationship between social network and energy saving 
behavior is difficult to generalize based solely on 
experimental data without the aid of simulations. Thus, a 
simulation model that can explain the residents’ decision 
making process is a critical contribution to our understanding 
of how best to leverage the interpersonal relationships 
captured by peer networks to encourage energy savings. 

In future research we plan to employ this model of an 
agent’s simulated energy use to find some difference among 
different types of network structures. Some recent research 
shows that real social networks show scaling free and small-
world properties [14, 15]. In addition, we will examine 
unique contributions of varying network properties on 
conservation behavior. The network size may be one 
condition that would lead to increasing or decreasing energy 
consumptions.  
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