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Abstract. In this paper, based on the lattice Boltzmann method (LBM) and the Oldroyd-B model, 

the decoupled solving method for the incompressible Navier-Stokes equation and advection-

diffusion constitutive equation and the boundary processing formats are given. The flow of 

viscoelastic fluid in the planar 3:1 contraction channel is simulated. For different Reynolds numbers 

Re, Weissenberg numbers Wi and viscosity s, the streamline patterns, the positions of vortex 

center and the length of vortex are obtained, and the influences of these parameters on flow 

behavior are discussed. The numerical results also present that the decoupled solving method is 

feasible and the LBM has fine accuracy and stability. 

Introduction 

Lattice Boltzmann method (LBM) is a mesoscopic model between the fluid microscopic molecular 

dynamics model and macroscopic model, which is different from the macro level of the traditional 

numerical simulation methods (such as finite difference method, finite volume method, etc.). On the 

contrary LBM is based on the collision and migration of fluid particle to describe the flow 

phenomenon, and treat the fluid as abstract particles. Due to its clear evolution process, strong 

parallel performance and suitable for large-scale numerical calculation, LBM has become a 

powerful tool to simulate a variety of physical phenomena, and showed a broad prospect in the 

engineering application [1,2]. 

Viscoelastic fluid widely exists in the plastics industry, chemical industry, petroleum industry, 

food industry and biological engineering, etc. Different from the Newtonian fluid, this class of 

fluids is characterized by the fact that the deformation of an element of fluid induced by a stress 

does depend not only on the strain itself but also on the history of the deformation (memory effect). 

Common viscoelastic constitutive model [3] is divided into two major categories of differential and 

integral. Differential type constitutive model mainly contains Maxwell, Oldroyd-B and PTT, and 

integral type constitutive model mainly contains K - BKZ, etc.  

In many engineering applications, the numerical simulation has become an effective technique to 

predict the behavior of viscoelastic fluid. In 1997, Qian and Deng [4] had used the lattice 

Boltzmann method to simulate the viscoelastic fluid flow. In their work, the equilibrium distribution 

function had been changed in order to reflect the elastic effect. But this method has only considered 

the unilateral elastic effect, and not really brought in the constitutive equation. Giraud [5] and 

Lallemand [6] established the lattice Boltzmann model of Jeffreys fluid later by introducing Jeffreys 

constitutive equation. But they treated the stress tensor and strain tensor of Jeffreys constitutive 

model as a linear relationship, ignoring the memory of stress tensor, so they hadn’t took some 

important elastic effect into account. Because Maxwell model is simple related to others and the 

stress tensor could be expressed in terms of the integral, so in 2002, Ispolatov [7] established 

Maxwell fluid of the lattice Boltzmann model by introducing Maxwell external forces. A 

preliminary analysis shows that the model can accurately simulate the viscoelastic behavior of 

viscoelastic fluid, but limited by the stability, only a small relaxation time could be computered. 

This work also ignored some important elastic effect as Giraud [5] did, but the model was 
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successfully used to simulate the bubble motion in the shear flow [8,9]. In 2010, Malaspinas [10] 

introduced dual distribution function to simulate Oldroyd-B fluid. In this work, the configuration 

tensor was used instead of stress tensor [11,12] in the Oldroyd-B constitutive model, and the 

convection diffusion lattice Boltzmann model [13] was used to solved the configuration tensor 

component, then the stress tensor could be obtained through the configuration tensor.  

The outline of this paper is the following. Section 2 describes the Oldroyd-B constitutive model. 

Section 3 discusses the decoupled solving methods for incompressible Navier-Stokes equation and 

advection-diffusion constitutive equation and gives the boundary processing format. Section 4 

numerically simulates viscoelastic fluid flow in the two-dimensional 3:1 contraction flow channel, 

and obtains the streamline distribution, the positions of vortex center and length of vortex with 

different Reynolds numbers Re, Weissenberg numbers Wi and viscosity s, and discusses the 

influences of these parameters for the streamline distribution.  

Constitutive Model 

In simulating the polymer processing, differential type of PTT constitutive model can more 

accurately describe the viscoelastic rheological behavior of polymer fluid. The stress tensor is 

decomposed into pure shear s and polymer viscoelastic  as follows : 

s                                                            (1) 

For the Oldroyd-B model (a kind of PTT model), the viscoelastic deviatoric stress tensor is given by 

( )

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 

p
Π A I                                                      (2) 

where  is polymer relaxation time, and A is conformation tensor (a statistical indicator of the 

orientation of the polymer molecules). Then the constitutive equation, written in terms of the 

conformation tensor A, reads 
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where d/dt= t+(u) is material derivative, and u is fluid velocity.  

Numerical Model 

Classic lattice Boltzmann method is used to solve incompressible Navier-Stokes equation, in which 

the viscoelastic stress tensor  given by solving the constitutive equation can be as a known 

quantity here. So the lattice Boltzmann-BGK equation with second order precision [10] is given by 
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where the ei s are the discrete microscopic velocities in the i th direction and τ͞ is the relaxation time. 

The action of forces Fi and equilibrium distribution function (0) ( , )if tx is as follows: 
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with 2

i i i sc Q e e I whereas the colon “:” sign denotes full index contraction. The symbols ωi and cs 

are respectively the weights and the sound speed of the lattice. The quantity uu represents the tensor 

product of the vector u by itself and g represents the force density. The distribution function fi can 
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use the D2Q9 model, as shown in Fig.1. The macro density , velocity u and pressure p 

respectively are given by 
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Figure 1. The D2Q9 lattice model 

In order to solve configuration tensor A, Denniston [14] and Marenduzzo [15,16] Et al. adopt a 

revised lattice Boltzmann model [17] to obtain the distribution function hi by calculating the 

advection-diffusion equation, thereby the configuration tensor A of each component can be got to 

discrete lattice Boltzmann equation : 
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where  is the relaxation time, and ih is distribution function of configuration tensor. The source 

term  , equilibrium distribution function (0)

ih  and the relationship between distribution function 

ih and configuration tensor A show as 
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By using the Chapman-Enskog expansion method, we can get the following equation : 

  2

2 t

l

d

dt c



   


       

A
ς A A u u A u                                         (11) 

where  2 1 2lc    

It has been proven in theory that there can be a diffusion term in the constitutive equation [18]. 

Research shows that the constitutive equation introduced in diffusion coefficient  can increase the 

numerical simulation stability [19,20], but diffusion coefficient in practice should be very small. 

Advection diffusion equation choose D2Q5 model in simulation, as shown in Fig.2. 

 

Figure 2. The D2Q5 lattice model 
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In numerical calculation, the alternating iteration method have been adopted for Eq. (4) and (7). 

On the one hand, with the Navier-Stokes scheme, we compute the velocity and its gradients and the 

source term in Eq. (9). On the other hand, the advection-diffusion scheme enables one to estimate 

the conformation tensor, which is transformed into the viscoelastic stress tensor  by using Eq. (2). 

In this paper, the distribution function f uses the D2Q9 model and boundary treatment uses 

nonequilibrium extrapolation format. The the distribution function h uses D2Q5 model, and 

boundary treatment here adopts a same approach as in [10].        

The Results of Numerical Simulation and Analysis 

Using the above method, the numerical simulation of viscoelastic fluid flow behavior in planar 

contraction flow channel is discussed as follow. The geometric model of the channel is shown in 

Fig.3, and the symbols h, H, L1, L2, Lr are respectively the height of inlet, the height of outlet, the 

entrance length, the contract length, and vortex flow length of wall side. In the following numerical 

simulation, h=120, h:H=3:1, L1=120, L2=120.s ,p are respectively kinematic viscosity of the 

solution and polymer, and the viscosity ratio Rv=s /p =1/8. In the actual calculation model, the 

expression of Reynolds number Re and Weissenberg numbers Wi can be obtained: maxWi 2 /u h , 

maxRe / su h 2  , where umax is the maximum speed of entry. 

 

  

Figure 3. Geometry of the channel 

In order to study the flow law of the viscoelastic fluid in a two-dimensional contraction flow 

channel, this paper set a total of 12 groups of different parameters. We have divided into three cases 

to study respectively the influence of the parameters Re, s and Wi. Table.1 list the parameter 

values used in numerical simulation: 

Table 1. The parameter list of 2D contraction flow. 

 Re Wi s umax 

Case 1 

1.0 

0.10 0.06 

0.009 

2.0 0.018 

3.0 0.027 

4.0 0.036 

Case 2 1.0 0.10 

0.06 0.009 

0.09 0.015 

0.12 0.0225 

0.15 0.030 

Case 3 1.0 

0.10 

0.06 0.009 
0.20 

0.30 

0.40 

H 

L

2 

h 

L1 

Lr 
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Fig.4 shows the influences of different Re on the streamlines in contraction flow with s =0.06, 

Wi =0.1. Table.2 gives the coordinate value (x, y) of vortex core and the length of backflow Lr with 

different Re numbers. 

 

   
(a)Re =1.0                                               (b)Re =2.0 

   
(c)Re =3.0                                                 (d)Re =4.0 

Figure 4. Streamlines in contraction flow for different Re (s=0.06, Wi=0.1) 

Table 2. The coordinate value (x, y) and Lr for different Re 

Re 1.0 2.0 3.0 4.0 

x 113.79 114.19 114.84 115.43 
y 111.82 113.70 114.85 115.69 
Lr 15.25 13.61 12.50 10.75 

 

It can be seen from Table.2, for Wi = 0.1, s = 0.06, with the increase of Re, that x and y 

coordinate of vortex core increases gradually for the upper part, which means that vortex core is 

more and more close to the respective corner, and that the length of backflow Lr decreases, and the 

corresponding flow area decreased gradually too. 

Fig.5 displays the influences of different s on the streamlines in contraction flow with Re =1.0, 

Wi =0.1. Table.3 shows the coordinate value (x, y) of vortex core and the length of backflow Lr with 

different s. 

 

      
(a)s =0.06                       (b)s =0.09 

      
(c)s =0.12                                                      (d)s =0.15 

Figure 5. Streamlines in contraction flow for different s (Re =1.0, Wi=0.1) 
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Table 3. The coordinate value (x, y) and Lr for different vs 

s 0.06 0.09 0.12 0.15 

x 113.79 114.05 114.30 114.48 

y 111.82 111.64 111.47 111.40 

Lr 15.25 16.64 15.68 15.74 

 

It can be seen from the Table.3, for Wi = 0.1, Re =1.0, with the increase of s, that x coordinate 

of vortex core increases for the upper part, but y coordinate decreases gradually, which means that 

vortex core is more and more close to the respective contraction entrance, and that the length of 

backflow Lr first increases and then decreases. 

Fig.6 shows the influences of different Wi on the streamlines in contraction flow with Re =1.0, s 

=0.06. Table.4 gives the coordinate value (x, y) of vortex core and the length of backflow Lr with 

different Wi numbers. 

 

    
(a)Wi=0.10                                          (b)Wi=0.15 

    
(c)Wi=0.20                                              (d)Wi=0.25 

Figure 6. Streamlines in contraction flow for different Wi (Re =1.0, s =0.06) 

Table 4. The coordinate value (x, y) and Lr for different Wi 

Wi 0.10 0.20 0.30 0.40 

x 113.78 114.41 114.66 114.89 
y 111.82 111.60 111.75 114.81 
Lr 15.25 16.24 15.64 12.67 

 

It can be seen from the Table.4, for Re =1.0, s = 0.06, with the increase of Wi, that x coordinate 

of vortex core increases gradually for the upper part, and that the y coordinate first decreases and 

then increases, but length of backflow Lr first increases and then decreases. 

Conclusion 

In this paper, we apply the lattice Boltzmann method combining Oldroyd-B model to discuss the 

decoupled solving methods for the incompressible Navier-Stokes equation and advection diffusion 

constitutive equation and give the boundary processing format. Finally we implement the numerical 

simulation for viscoelastic fluid flow in the two-dimensional 3:1 contraction flow with different 

Reynolds number Re, viscosity s and Weissenberg numbers Wi. We also obtain the streamline 

distribution, the location of vortex core and the size of the vortices in each condition, and discuss 

the influence of the these parameters on streamline distribution. The simulation results in this paper 
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show that the model and processing method have good accuracy and stability, which has laid a good 

foundation for later research work (such as free surface,  multiphase fluid). 
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