
 

B. Iyer, S. Nalbalwar and R.Pawade(Eds.) 

ICCASP/ICMMD-2016. Advances in Intelligent Systems Research.   

Vol. 137, Pp. 342-348.  

© 2017- The authors. Published by Atlantis Press 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licens)es/by-nc/4.0/).  
 

 

Scheduling Tasks in Grid Computing Environments 

A. Kadam1,  V. Thool2 

1Department of Computer Engineering, All India Shri Shivaji Memorial College of Engineering, Pune   

2Department of Instrumentation Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded. 

{kadam_in@yahoo.com, vrthool@yahoo.com}                                           

Abstract: Scheduling tasks on different resources spread over a grid computing system is an NP complete problem. 

Assorted researchers are developing adaptation scheduling algorithms for getting optimality.  Hence they have 

proved a good result for tasks scheduling about resources selection. In this review, we study the Group-based 

Parallel Multi-scheduler (GPMS). It is focused on effectively utilizing the advantages of multicore systems for Grid 

scheduling. Two job grouping methods are implemented, viz., Execution Time Balanced and Execution Time Sorted 

then Balanced termed as ETB, ETSB respectively. Two machine grouping methods; Evenly Distributed (EvenDist) 

and Similar Together (Sim Tog). We also see the MinMin Grid scheduling algorithm. We demonstrated that by 

assigning different tasks to the machines into batch before scheduling, the computation time for the scheduling 

process improves by 85% over the ordinary MinMin algorithm. We also study a new heuristic algorithm called Sort-

Mid. It strives for maximizing the utilization and minimizing the time period. 

 

Keywords—Grid Computing, Scheduling, Parallelism. 

 

1 INTRODUCTION 

Grid computing systems are distributed systems, enable large-scale resource sharing among millions of computer 

systems across a worldwide network such as the Internet. Grid resources are different from resources in 

conventional distributed computing systems by their dynamism, heterogeneity, and geographic distribution. The 

organization of the grid infrastructure consists of four levels as First: the foundation level, it includes the physical 

components. Second: the middleware level, it is the software responsible for task execution, task scheduling, 

resource management, and security. Third: the services level, it provides vendors/users with efficient services. 

Fourth: the application level, the application level contains the services such as business tools and operational 

utilities. 

The scheduling has become one of the major research objectives, since it directly influences the performance of grid 

applications. Task scheduling [3] is the key step of grid resource management. It governs job to assign suitable 

resources by apply polices and scheduling algorithms. In static scheduling, all resources related data and all the tasks 

are assumed to be known in advance, application is scheduled. Moreover, each task is allocated once to a resource. 

Unlike static scheduling, in dynamic scheduling, the task assigning is done on the go as the application executes, but 

it is not possible to note the execution time. Tasks are coming dynamically scheduler has to work more in decision 

making to allocate resources. The advantage of the dynamic over the static scheduling is that the system does not 

require to posse the run time behavior of the application in prior it runs. 

Multicore technology has come to stay and as Grid computing continues to grow, it will be worthwhile to scale Grid 

scheduling to benefit from the multicore technology. Multicore systems offer opportunity for parallelism and 

increased throughput. Parallelism takes programming away from the traditional serial execution approach by 

employing several processors to simultaneously execute independent tasks and is best suited for independent jobs 

which characterize a large percentage of users’ jobs on the Grid.  

 



Scheduling Tasks in Grid Computing Environments                                                                                                 343 

 

 

 

Increased throughput is a direct increase in output over a set period resulting from more efficient processing. Current 

Grid scheduling algorithms do not utilize the advantages built in the underlying multicore systems, mostly focusing 

on parallel execution of jobs instead of parallelizing the scheduling function. Neglecting the underlying multicore 

hardware in the scheduling algorithm of the Grid will cause an unnecessary bottleneck in processing. 

1.1 RELATED WORK 

Reda et. Al. [1] present a new heuristic algorithm, Sort-Mid to maximize utilization and find appropriate resources 

in Grid. In [2], the authors propose a Particle Swarm Optimization (PSO) based scheduling algorithm which aims at 

optimization via rule generation to implement classifier system. Garg et. Al. presents a task scheduler which 

provides needful resources to the tasks according to the dynamic workflow. It also performs rescheduling to provide 

minimum execution time [3]. In [4], the authors discuss the implementation of Grid and Smart Grid applications 

over the Cloud environment. Some of the applications include Cyber Physical System (CPS) and Dynamic Internet 

Data Centers (IDCs). Finally in [5], the authors propose the Group-based Parallel Multi-scheduler (GPMS), which 

points effectively utilizing the advantages of multicore systems for Grid scheduling. It divides jobs and machines 

into paired groups and separately scheduling jobs in parallel from same groups. 

1.2 Algorithms Used 

1.2.1 Group-based Parallel Multi-scheduler for Grid (GPMS) [5] 

The GPMS for Grid aims at exploring parallelism on multicore systems to raise scheduling algorithms inside Grid. 

To achieve this we assume that multicores are pervasive and constitute major part of Grid machines. We also 

assume that our scheduler runs on a multicore system. 

The GPMS requires jobs to be split into groups. Two methods employed to achieve this are: 

ETB: Execution Time Balanced —Estimate execution time and then balance across groups. 

ETSB: Execution Time Sorted and Balanced —Estimate execution time, then sort jobs and then balance across 

groups. 

 

A High level algorithm for GPMS is given below. 

 

Step 1: Start 

Step 2: Define number of threads 

Step 3: Define number of groups to use 

Step 4: Read jobs into the scheduler 

Step 5: Estimate the execution time for each job from the job attributes, 

Step 6: Group jobs using a chosen grouping method into number of specified groups  

Step 7: Read machines and group them into the specified number of groups using a chosen grouping method 

Step 8: Execute the scheduling algorithms within the groups 

Step 9: Write results to output file 

Step 10: Stop 

 

1.2.2 Sort-Mid algorithm [1] 

Scheduling is the main step of grid machines management. Machines may be homogeneous or heterogeneous. A 

grid scheduler choose the best machine to a particular job and submits that job to the selected machine[18]. The 

main aim of this heuristic algorithm for scheduling a group of pieces on a computational grid system is to maximize 

the machine use and to minimize the time period. Given a grid G and a restricted number of machines (resources) 

M; M1, M2,...,Mm, m> 1.  

Let a finite nonempty set of n tasks be the T; T1, T2,...,Tn, n> 1 that needs to be executed in G. The steps to assign 

each task to a suitable machine are summarized below. It uses assignment function 

S = T → G 



344 Kadam and Thool 

 

  

which is described as follows. I≤ n and j ≤ m for every positive integer; such that S(Ti)=Mj. The first step is SCT: to 

sort the completion times of each task Ti in Tin increasing order. This scheduling decision is based on computing 

the average value AV of two consecutive completion times in SCT for each Ti. AV is computed by 

(SCTK+SCTK+1)/2 

where K=[m/2]. In the second step, the task having the maximum AV is selected. In the third step, the task is 

allocated to the machine possessing minimum completion time. Next, the assigned task is deleted from T. 

Eventually; the waiting time of the machine that executes this task is updated. These steps are repeated until all n 

tasks are scheduled on m machines. 

 

  

1.2.3 Adaptive workflow scheduling (AWS) algorithm [3]  

Proposed AWS has three phases: (i) Resource discovery and monitoring phase, (ii) static task scheduling and  

(iii) Rescheduling phase. The flow diagram for the algorithm is as given in Fig. 2. 

1.2.4 Cloud Computing for Smart Grid applications [4] 

In this paper, authors discussed various possibilities to apply CC towards implementation of SG applications. 

Although a specific algorithm for a particular application has not been mentioned, the authors have proposed many 

application, challenges and scenarios that can be studied for research thesis and so on. 

 

 

1.2.5 Knowledge Acquisition with Rules as Particles (KARP)[2] 

In this paper, the authors propose KARP, a  novel  strategy  for  classifier  discovery  systems for  the  generation  of  

high  quality  fuzzy  rules  in  Fuzzy Classifier Systems(s). 

 

KARP operates in the following stages: 

1. Create  a  RB  made  up  of  NP  particles  determined  by  its  position to  become  the  individuals  of  the  

swarm.  Definition of particles position in the integer space. 

2. Assign  each  particle  a  velocity  that  handles  the  modification  of each  rule  in  every  step.  Definition of 

velocity of a particle in the integer space. 

3. Recognize the best particle discovered by every individual and the whole swarm.  Quality of a particle. 



Scheduling Tasks in Grid Computing Environments                                                                                                 345 

 

 

 

4. Update  the  velocity  of  each  particle with respect  to  their  own  and social  experience. 

5. Update location of every particle in the search space. 

6. The detailed algorithm for implementation can be followed in [2]. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

               N 

 

 

 

 

 

 

 

 

            N 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The flow diagram of the procedure for AWS 

Start 

Resource Discovery & 

Monitoring 

Schedule Application 

graph to shared grid 

resources 

Rescheduling the remaining 

tasks of DAG 

While (DAG not 

finish) 

Monitor recourses  

( host and link) 

IF (Esend OR Eexe) 

event trigger 

Eve 

Terminate 

Send ready task to the 

resources and start 

execution 

 



346 Kadam and Thool 

 

  

2 Results 

2.1 Group-based Parallel Multi-scheduler for Grid (GPMS)  

With four Grid sites author simulated a Grid environment which consisting of machines with different CPU speed 

and number of processors. Our scheduling aims directly at the CPUs on the individual machines. Jobs are scheduled 

to CPUs. 

With the Priority job grouping method, the SimTog and EvenDist methods recorded a performance improvement of 

5.90 and 6.76 over the MinMin, with times of 41 006 and 35 807 ms respectively. 

With the ETSB grouping method, the SimTog and EvenDist methods recorded a 13 times and 52 times performance 

improvement over the MinMin using 17 569 and 4643 ms respectively, while the ETB job grouping method yielded 

46 and 51 times performance improvement between the SimTog and EvenDist methods respectively using 5224 and 

4701 ms respectively to perform the scheduling task. The ANOVA results which show the significance of the 

performance differences are given in table below. 

 

Table 1. ANOVA result for Priority and all grouping methods 

 

Test Method P value Significance difference? 

1 Priority vs GPMS (ETB and ETSB averaged) 0.027992 Yes 

2 Priority vs. ETB 0.015965 Yes 

3 Priority vs. ETSB 0.048583 Marginal 

4 Priority-EvenDist vs. ETB- EvenDist  0.020335 Yes 

5 Priority-SimTog vs. ETB- SimTog  0.013124 Yes 

6 Priority-EvenDist vs. ETSB- EvenDist 0.020128 Yes 

7 Priority-SimTog vs. ETSB- SimTog 0.109315 No 

2.2 Sort-Mid algorithm  

The following table shows the results obtained by the authors as compared to other competitive algorithms. Detailed 

experimentation results are available in [1]. 

 

Table 2. Computational Complexity 

 

Algorithm Complexity 

MET O(nm) 

OLB O(nm) 

Mact-Min O(nm) 

Max-Min O(n2m) 

Min-Mean O(n2m) 

Min-Min O(n2m) 

Sufferage O(n2m) 

Sort-Mid n2m log m 

2.3 Adaptive workflow scheduling (AWS) algorithm   

The results discussed in the paper clearly specifies that the proposed algorithm outperforms the other algorithms in 

all the cases and is the suitable algorithm for workflow scheduling in dynamic grid environment, where the number 

of resources and load on them are changing dynamically. In consideration of makespan under different amount of 

load change (for random task graph) we see AWS rising slightly above 1000 makespan at 30% load changes 

whereas other algorithms at the same percentage perform as follows: AHEFT-1150(app.), MinMin-1300(app.), and 

HEFT being the maximum at 1350. The detailed comparison has been shown in Fig.9, Fig.10[3]. 



Scheduling Tasks in Grid Computing Environments                                                                                                 347 

 

 

 

KARP: Knowledge Acquisition with Rules as Particles  
Relative performance of learning strategies has been tabulated below. 

 

Table 3. Relative performance of the learning strategies 

 

Comparison/iteration  50 100 200 

Swarm-KARP 1 VS Genetic-Michigan 1 (%) 0.42 1.63 1.60 

Swarm-KARP 1 VS Genetic-Michigan 1 (%) -0.72 0.38 0.34 

Swarm-KARP 2 VS Genetic-Michigan 1 (%) 2.10 2.50 2.47 

Swarm-KARP 2 VS Genetic-Michigan 1 (%) 0.98 1.26 1.23 

 

3 Conclusion 

In the authors provide an algorithm for the challenge of selecting the appropriate resource for a specific task [1]. The 

implementation of Sort-Mid algorithm and various existing algorithms are tested using a benchmark simulation 

model. This algorithm overcomes the affection of large varies of task’s execution times. The test results are indicate 

that Sort-Mid utilizes the grid by more than 99% at 6 instances and more than 98% at 4 instances. 

A new strategy for scheduling, based on PSO is proposed. This new strategy, KARP, proves  its  efficiency  for  

optimizing  a  wide  range  of  functions based  on  the  movement  of  swarms  in  the  space  towards  best  suited 

locations. In  KARP  approach  each  rule  acts  as  peace  that  moves  in the  place  with  the  final  target   of  

finding  the  best  location  and  thus, the  best  quality  to  cooperate  in  obtaining  RBs  for  the  experts  classifiers  

systems.  KARP  is  intended  to  be  an  alternative  to  the  classic genetic  approach  for  rule  discovery  in  FCS,  

Michigan  approach. As  simulation  results show,  KARP  achieves  an  average  greater  accuracy  (0.34–2.47%) 

and  a  faster  convergence  speed  with  the  consequent  reduction  of computational  effort.  One  of  the  most  

relevant  advantages  of  KARP  over  the  genetic  approach  is  related  to  its  simplicity. Finally, KARP  is  

suggested  as  an  efficient  alternative  for rule  discovery  in  FCSs. 

It is proposed a novel adaptive workflow scheduling (AWS) algorithm, to schedule workflow application in 

dynamic grid environment with the target to achieve the small execution time. By supporting rescheduling of tasks 

form overloaded resources the algorithm also provides load balancing. The simulation results apply randomly 

generated task graphs and corresponding to real world problems like GE and FFT demonstrates to 10% - 40% 

performance improvement (makespan minimization) of the proposed AWS algorithm over other scheduling 

algorithms considered. 

In this paper we are provide architecture for hybrid computing and different methods and challenge to apply Cloud 

Computing in Smart Grid. Finally, Cloud platforms are inspected technical, security perspectives, and their 

compatibility with Smart Grid systems investigated. 

We have presented a multi scheduler algorithm to show how different types of grouping can tackle parallelism in 

multicores get positively affect scheduling speed. In final Group Parallel Multi-Scheduler (GPMS) can be utilized in 

such environment, where there is a need to schedule a stream of jobs onto a set of limited resources. This type of 

typical environments which could benefit is Grid and Cloud environments. 

References 

[1] Reda NM et al., Sort-Mid tasks scheduling algorithm in grid computing, Journal of Advanced Research 

(2014),http://dx.doi.org/10.1016/j.jare.2014.11.010. 

[2] S.  García-Galán, R.P.  Prado, J.E.  Munoz  Expósito, “Rules  discovery  in  fuzzy  classifier  systems  with  

PSO  for  scheduling  in grid  computational  infrastructures,” Applied  Soft  Computing  29  (2015)  424–435. 

[3] R. Garg, A.K. Singh, Adaptive workflow scheduling in grid computing based on dynamic resource 

availability, Engineering Science and Technology, an International Journal (2015), 

http://dx.doi.org/10.1016/j.jestch.2015.01.001. 

[4] Melike Yigita,V. Cagri Gungor, Selcuk Baktir, “ Cloud Computing for Smart Grid applications”, Computer 

http://dx.doi.org/10.1016/j.jestch.2015.01.001


348 Kadam and Thool 

 

  

Networks 70 (2014) 312–329. 

[5] Goodhead T. Abraham, Anne James, Norlaily Yaacob,” Group-based Parallel Multi-scheduler for Grid 

computing”, Future Generation Computer Systems, http://dx.doi.org/10.1016/j.future.2015.01.012 

[6] Jinglian WANG, Bin GONG, Hong LIU, Shaohui LI, Juan YI, “Heterogeneous Computing and Grid 

Scheduling with Hierarchically Parallel Evolutionary Algorithms,” Journal of Computational Information 

Systems 10: 8 (2014) pp. 3291–3298. Available at http://www.Jofcis.com. 

[7] Pablo Ezzatti, Martín Pedemonte, Álvaro Martín, “An efficient implementation of the Min-Min heuristic” 

Computers & Operations Research 40 (2013) pp.2670–2676. 

[8] Andrei Tchernykh, Uwe Schwiegelshohn, Ramin Yahyapour “ON-LINE HIERARCHICAL JOB 

SCHEDULING ON GRIDS,” unpublished original article. 

[9] Peng Xiao and Dongbo Liu, “Multi-scheme co-scheduling framework for high-performance real-time 

applications in heterogeneous grids,” Int. J. Computational Science and Engineering, Vol. 9, Nos. 1/2, (2014) 

pp. 55-63. 

[10] Mauro Canabe, Sergio Nesmachnow, “Parallel implementations of the MinMin heterogeneous computing 

scheduler in GPU,” CLEI Electronic Journal, Vol. 15, No. 3, Paper- 8, Dec. 2012 pp. 1-11 

 

http://dx.doi.org/10.1016/j.future.2015.01.012

