

B. Iyer, S. Nalbalwar and R. Pawade (Eds.)

ICCASP/ICMMD-2016. Advances in Intelligent Systems Research.

Vol. 137, Pp. 441-449.

© 2017- The authors. Published by Atlantis Press
This is an open access article under the CC BY-NC license (http://creativecommons.org/licens)es/by-nc/4.)

Cyclic Redundancy Check: A Novel Software Implementation for

machine cycle optimization and analysis for deciding Low Peak to

Average Power Ratio Discrete Sequences

A. Kotade1, A. Nandgaonkar
1
 ,

S. Nalbalwar

1
 and U. Shiurkar

2

1Electronics and Telecommunication Engineering Department, Dr. BATU, Lonere-402103, Raigad, Maharashtra, India.
2Director, Deogiri Institute of Engineering and Management Studies, Aurangabad – 431005

{kotade.amol@gmail.com; abnandgaonkar@yahoo.com; slnalbalwar@gmail.com}

Abstract: Cyclic Redundancy Check (CRC) is widely used error detection technique in many contemporary com-

munication systems such as Fourth Generation (4G) Mobile Communication-Long Term Evolution (LTE) and

LTE Advanced, Wi-Fi, Wireless LAN. For real time embedded systems, code size (Memory), Processor Ma-

chine Cycle (Speed) and Power are the three important parameters which are needs to be optimized. CRC is

very effective and simple for error detection but its software implementation is not efficient. This paper presents

software implementation of CRC using Bit by Bit (BYB) and Look-Up Table (LUT) approaches reported in the

earlier literature. Using these approaches, we have compared machine cycle requirements for computation of

CRC-3/5/8/12/16 generator polynomials. We have used TMS320C6713 and Freescale Star Core SC140 archi-

tectures for comparing the machine cycle requirements. Then we have intuitively modified our software imple-

mentations (Based on C program) of LUT using In Place Computation (IPC).This IPC-LUT based CRC compu-

tation is found to be more optimized in terms of machine cycle and memory compared to LUT method. We have

reduced the machine cycle requirement by 39.47 % using our IPC-LUT approach compared to conventional

LUT. We have also developed inline assembly code for SC140 architecture using IPC-LUT approach that takes

only 45 machine cycles for computations. Peak to Average Power Ratio (PAPR) is one of the major drawback

of contemporary communication systems. For third parameter (Power), we have simply done the analysis to fix

up the decision criteria for deciding the sequences having low PAPR.

Keywords: Cyclic Redundancy Check (CRC), Look- Up Table (LUT), Machine Cycles, Peak to Average Power Ratio

(PAPR), Optimization.

1 Introduction

Emerging demands for high data rate services and high spectral efficiency are the key driving forces for the con-

tinued technology evolution in wireless communications. Third generation (3G) mobile communication systems

have been commercially deployed to meet the initial demand for high data rate. Wireless communication for

mobile terminals has been a high performance computing challenge. It requires almost super computer perfor-

mance while consuming very little power [1]-[2]. This requirement is being made even more challenging with

the move to Fourth and Fifth Generation (4G / 5G) wireless communication. Next generation data rates are

greater than current 3G technology hence it will require more computational power. Leading technologies are

protocols like 802.16e (Mobile Worldwide Interoperability for Microwave Access-WiMAX) and Third Genera-

tion Partnership Project (3GPP) Long Term Evolution (LTE), LTE [11] which uses Orthogonal Frequency Divi-

sion Multiplexing (OFDM) at core level. A promising modulation technique that is increasingly being adopted

in the telecommunication field is OFDM [3]. ODFM is a good solution for high speed digital communications.

But high Peak to Average Power Ratio (PAPR) is a major problem in OFDM [8], [9], [10]. In OFDM, the data

is spreaded over a large number of orthogonal carriers modulated at lower rates. The carriers can be made or-

thogonal by appropriately choosing the frequency spacing between them. Its advantages are high data rate and

bandwidth efficiency. To provide high data rate in next generation wireless communication systems, the execu-

tion of all baseband processing algorithms must be done at high speed. The algorithms are implemented at Phys-

ical Layer. The physical layer deals with bit level transmission between different communicating stations. It

consists of the basics networking hardware transmission technologies of a network.

442 Kotade et.al.

Hence developing the algorithm which will take Minimum Machine Cycles for execution (High Speed), Mini-

mum Code Size (Less Memory) and Minimum Power consumption is of prime consideration. Cyclic Redundan-

cy Check (CRC) is widely used error detection method in data transmission and storage systems. It is simple but

its software implementation is not efficient. Using CRC for error detection in embedded systems involves trade

off among Speed (Machine Cycle), Memory (Code Size) and Power consumption. Because many embedded

systems have significant resource constraints, it is important to understand the available trade off options and

find the ways to attain better error detection at lower computational cost [6]-[7]. In this paper, we have studied

the optimization of CRC computations in terms of machine cycle and memory requirement. CRC typically uses

Galois Field, GF (2) for its operation. It is basically a discrete sequence. Hence we have also done PAPR analy-

sis for discrete sequences for understanding the power constraints.

2 Physical Layer Context

The message carried over the physical channel is protected by various Forward Error Correcting Codes (FEC) in

the physical layer. With FEC, redundant parity bits are added to the message, and these bits allow the receiver to

detect and correct the errors. In the channel coding process CRC is appended to the input data packet and then

passed to the FEC encoder. After encoding, puncturing is performed to increase the data rate followed by the

interleaver to distribute the burst error. The scrambler introduces the pseudo random sequence into the incoming

bit stream. This avoids the occurrence of long streams of zeros or ones and also provides better synchronization.

At the receiver side exactly opposite operations are performed to get back the original information bits. The

flow of data through different channel coding blocks can be referred from Fig. 1. The algorithm design and

software implementation overview is given in the subsequent sections.

Fig. 1. Channel Coding Sub-blocks

2.1 A Novel Strategy for Algorithm Design

Fig. 1 shows all the sub-blocks of the channel coding block. Blocks are implemented in such a way that it ex-

poses two Application Peripheral Interface (API). One of these is the Initialization API while second is the actu-

al kernel of the block, or the Processing API. Typically, the user of the channel coding block would call the Ini-

tialization APIs for all the blocks at system start up thereby blocking the memory required by various blocks,

initializing Look Up Tables (LUT) and other data structures. Thereafter, in the steady state operation, the user

would call the Processing API as and when required. Fig. 2 shows the call sequence for these APIs:

Fig. 2. Call Sequence of the Channel coding APIs

Cyclic Redundancy Check... 443

2.2 Algorithm Testing Framework

The test framework includes a set of test stub applications along with configurable parameters specific to the

routines which are to be tested. Typically, a developed routine would be tested by building a project using

Freescale CodeWarrior IDE. The input and reference output test vectors will be provided. The test stub applica-

tion will call the Initialization API and then will pass the input test vector to the routine being tested (Processing

API). It will then compare the output generated by the routines against the reference output test vector calculated

using hand computations. It will provide the test results as SUCCESS or FAILURE depending on the final com-

parison. The test vectors (i.e. reference input and output) would be saved as ASCII text files with typically one

value per line. The values can be unpacked bits (0 or 1), packed bytes/words (unsigned bytes/words) or soft val-

ues (signed bytes). The nature of values would depend on the input/output format of the routine to be tested. Fig.

3 shows flow chart for test stub.

Fig. 3. Flow Chart for Test Stub

3 CRC

The CRC length that can be inserted has five different values: 3, 5, 8, 12 and 16 bits. Probability of undetected

errors is low, when length of CRC is high.

Basic CRC computation algorithm: Bit by Bit Computation (BYB) [5]

1. Check MSB of data bit.

2. If MSB bit =1, then XOR the data with CRC poly and left shift by 1.

3. If MSB bit=0, then only shift data to left by 1.

4. After processing all bits, remainder is CRC.

444 Kotade et.al.

Table 1. CRC polynomials

CRC Polynomial

CRC-3 1 + D + D3

CRC-5 1 + D + D2 + D3 + D5

CRC-8 1 + D + D3 + D4 + D7 + D8

CRC-12 1 + D + D2 + D3 + D11 + D12

CRC-16 1 + D5 + D12 + D16

3.1 Software Implementation

Optimized Data Structure

typedef struct

{

 UINT1 *u1InpPtr; // Pointer to Input buffer

 UINT2 u2InLength; // Length of input data in bits

 UINT2 u2CrcPolyLen;// Length of the CRC polynomial

 UINT2 u2CrcPolyEq; //CRC Polynomial (Drop MS bit)

 UINT2 u2CrcLut [256]; // Lookup Table for the CRC

} stCrc;

Output buffer pointer and output length parameters are not used in final optimized data structure. u2CrcLut pa-

rameter of structure stores the 256 entries corresponding to CRC for input byte varying from 0x00 to 0xFF.

Length of each entry is equal to length of CRC polynomial. CrcLutGenerator () function generates the LUT [5]

specific to the CRC polynomial. As a part of initialization, members of the stCrc structure are initialized and the

LUT is populated by calling the CrcLutGenerator () function. The structure parameter u1InPtr and u2InLength

are initialized by user.

Pseudo Code:
INT2 CrcInit (stCrc *crc, UINT2 u2CrcPolyLen, UINT2 u2CrcPolyEq)

{

 IF (crc=NULL) THEN

 RETURN (FAIL)

 crc->u2CrcPolyLen = u2CrcPolyLen; // Assign the

 Poly length to structure

 //In the polynomial passed, LSB has D(0)and MSB has

 D(N),the function requires LSB to have D(N)and

 MSB to have D(0).Invert the polynomial for

 compatibility and initialize the structure with

 inverted polynomial (MSB becomes LSB)

 crc->u2CrcPolyEq = inverted u2CrcPolyEq

 CrcLutGenerator (crc) //Call the function to

 generate the LUT

 RETURN (SUCCESS)

}

The CRC encoder computes the CRC of the input message and appends it at the end of the input buffer. It pro-

cesses one byte at a time and uses pre-computed values stored in the LUT.

CRC Encoder:

Pseudo Code:

INT2 CrcEnc (stCrc *crc)

{

Cyclic Redundancy Check... 445

u2Iteration = crc->u2InLength /8; //Determine the no. of

 i/p data bytes

u1NoOfBitsLeft = crc->u2InLength % 8; // No. of bits not

 falling in the byte

 boundary

 IF (u1NoOfBitsLeft) THEN

 u2Iteration++

 ENDIF

 u2Reg = 0 // Initialize the processing

 register

 FOR i= 0 to u2Iteration DO

 Read next input data byte

 XOR the input data byte with lower order byte of

 u2Reg to get an INDEX

 Shift u2Reg 8 bits to the right

 XOR u2Reg with the contents of LUT at INDEX

 location

 ENDFOR

Append the CRC to input buffer with lower byte first followed by upper byte

RETURN (crc->u2InLength + crc->u2CrcPolyLen); //Returns

 the total no. of bits in the output

}

CRC LUT Generator

It performs the bitwise operation to compute the CRC for all the input byte varying from 0x00 to 0xFF.

Pseudo Code:
static INT2 CrcLutGenerator (stCrc *crc)

{ IF (crc=NULL) THEN

 RETURN (FAIL)

 Compute the 16-bit mask as per the length of CRC

 polynomial

 FOR INDEX = 0 to 256 DO

 Load the u2Reg with INDEX value

 FOR i= 0 to 8 DO

 IF (u2Reg & 0x0001) THEN

 u2Reg = (u2Reg >> 1) ^ u2CrcPolyEq

 ELSE

 u2Reg = u2Reg >> 1

 ENDIF

 ENDFOR

 Mask the contents of u2Reg

 Copy the u2Reg in LUT at INDEX value

 ENDFOR

 RETURN (SUCCESS)

4 Results and Discussion

Table 2 provides the machine cycle requirements for the computation of different variants of CRC on Freescale

SC140 architecture using conventional BYB, LUT [5]-[7] approaches and out proposed IPC-LUT approach. Op-

timization level of 0 and 3 can be set in SC140 Integrated Development Environment (IDE) project setting op-

tions. Finding the number of machine cycles, memory consumed, utilization of resources (shifters, Multiply and

Accumulate-MAC etc) present in architecture for developed software program is termed as “Profiling”. BYB is

traditional approach which consumes more machine cycles compared to LUT.

446 Kotade et.al.

Table 2. CRC optimization results obtained using Freescale SC140 architecture

In LUT method, CRC for all bytes are precomputed using BYB (Total CRC’s 256) and stored in the memory

and then the 8-bits of message which are to be encoded is used as an index to get the corresponding CRC values

from stored memory and appended to it. In our proposed IPC-LUT approach, in place computation is used to re-

duce the memory reference pointer and hence reduces machine cycle requirements drastically (Machine cycle

reduces from 114 to 69, around 40% reduction is achieved).

 In place computation implementation is to make the processing in-place, i.e. no separate output buffer.

The computed CRC is appended to the end of the input buffer. In LUT, separate input and output buff-

ers were used.

UINT1 *u1InpPtr; // Pointer to Input buffer; UINT1 *u1OutPtr; // Pointer to Output buffer

Copying input to output buffer and the indexing the memory for precomputed CRC values was creating

lot of memory read and write operation. This was consuming huge machine cycles. In proposed IPC-

LUT, we have reduced these memory references using in place computation. This has also reduced the

memory requirement to some extent. Removed following members of the stCrc structure

o output buffer pointer

o output length

 In LUT approach, the members of structure stCrc were being directly accessed from inside the loop,

resulting in extra memory reads. For IPC-LUT, pointer to the input buffer and pointer to the LUT are

stored in local variables initially. The local variables are then accessed inside the loop wherever re-

quired. Due to this reduction in machine cycle count was observed. Finally, IPC-LUT approach and

Data Arithmetic & Logical Units (DALU) available in SC140 architecture are properly utilized to de-

velop highly optimized assembly routine for CRC computation. CRC kernel takes only 45 machine cy-

cles for computation.

Table 3. Comparison of machine cycle consumption for LUT approach on Freescale’s SC140 and TI’s

TMS320C6713 architectures

CRC Calculation us-

ing Look Up Table

(LUT) Approach

Machine Cycles Consumed

CRC-3
CRC-

5
CRC-8 CRC-12 CRC-16

SC140 Architecture 114 114 114 114 114

TMS320C6713

Architecture
303 303 303 303 303

CRC Variants Optimization

Level

Cycles

(

release

0.01)

Bit by

bit

(BYB)

Cycles

(release

0.02)

(LUT)

Cycles

(release

0.03)

In-place

Computation

(IPC-LUT)

Assembly

Implementation

using SC140

CrcEnc_3_5

(POLY_LEN=3)

0 2511 914 - -

3 286 114 69 45

CrcEnc_3_5

(POLY_LEN=5)

0 2473 914 - -

3 286 114 69 45

CrcEnc_8_12

(POLY_LEN=8)

0 2325 914 - -

3 265 114 69 45

CrcEnc_8_12

(POLY_LEN=12)

0 2235 914 - -

3 265 114 69 45

CrcEnc_16

(POLY_LEN=16

0 1783 914 - -

3 206 114 69 45

Cyclic Redundancy Check... 447

CRC OPTIMIZATION RESULTS

0

50

100

150

200

250

300

350

APPROACHES

M
A

C
H

IN
E

 C
Y

C
L

E
 -

 L
E

V
E

L
 3

BIT BY BIT

LUT

IN-PLACE COMPUTATION

SC140 ASSEMBLY

CRC-8 CRC-12 CRC-16CRC-3 CRC-5

APPROACHES

The same code is executed on two different architectures for understanding the profiler performance. From , it is

clear that, machine cycle count drastically reduces on SC140 architecture. For designing the embedded

applications, capability of processor architecture is equally important for porting the optimized algorithm.

5 Low PAPR Discrete Sequences

The PAPR is defined as the ratio between the maximum instantaneous power and the average power, defined by

[8]-[10]

PAPR can be measured either in continuous time or in discrete time [10].

PAPR=

0

200

400

CRC-3 CRC-5 CRC-8 CRC-12 CRC-16

M
ac

h
in

e
C

yc
le

s
C

o
n

su
m

ed

CRC Variants

Machine Cycle Consumptions of CRC
Algorithms

on TI's and Freescale Architectures

TI's TMS320C6713 Architecture Freescale's SC140 Architecture

448 Kotade et.al.

Table 4. PAPR values of all possible data blocks for an OFDM signal with four

 Subcarriers and BPSK modulation

 Data

Block (X)

PAPR

(dB)

Data

Block(X)

PAPR

(dB)

[1,1,1,1] 6.0 [-1,1,1,1] 2.3

[1,1,1,-1] 2.3 [-1,1,1,-1] 3.7

[1,1,-1,1] 2.3 [-1,1,-1,1] 6.0

[1,1,-1,-1] 3.7 [-1,1,-1,-1] 2.3

[1,-1,1,1] 2.3 [-1,-1,1,1] 3.7

[1,-1,1,-1] 6.0 [-1,-1,1,-1] 2.3

[1,-1,-1,1] 3.7 [-1,-1,-1,1] 2.3

[1,-1,-1,-1] 2.3 [-1,-1,-1,-1] 6.0

From above table, it is clear that high value of PAPR (6 dB) exist for sequences

[1, 1, 1, 1], [1, -1, 1, - 1], [-1, 1, -1, 1] and [-1,-1,-1,-1]. These sequences have specific patterns of bits like con-

tinuous 1 and -1, alternate 1 and -1. There is no randomness present in these sequences. Hence more randomness

in the sequence, indicates less PAPR value. Now the question is how to determine the randomness present in the

sequence. We have worked on following testing criteria that provides good measure of randomness [13]:

Test 1: The first approach to judge the randomness of the sequence is the bit occurrence test. If number of ones

is very close to number of zeros then that binary sequence exhibits good randomness.

Let sequences be p= p1, p2, p3,…….., pn then

 measures the difference between number of ones and zeros. If is small, then sequence has good random-

ness.

Test 2: Second test is to determine the number of “Runs” present in the sequence. Run is subsequence with con-

tinuous o or 1. If number of runs is approximately equals to half of sequence length then that sequence has good

randomness.

Where, and k=1, 2,…..n

Smaller the , nearer the number of runs approximate to length n/2. However, consider the sequence

110011001100. It’s a short cycle sequence with very high PAPR. But for this sequence number of runs equals to

half of sequence length and number of ones equals to number of zeros. Hence if we apply first two test on this

sequence then our decision will be wrong. Therefore, the decision criteria should be amended.
Test 3: To find aperiodic autocorrelation of sequence [13] R (i). But is nothing but R (i) calculated at i=1. R

(i) must be very small to have good randomness in the sequence.

Hence sum of , and must be small, to have good randomness in the sequence.

Now our decision criteria for generating the low value PAPR sequences is as follows:

Forward Error Correction (FEC) generates the sequences. But these sequences should have low value of Peak to

Average Power Ratio (PAPR).Above decision criteria can be used for monitoring the sequences that exhibits

low PAPR. We transmits only those sequences or codewords that has low PAPR to avoid the distortions caused

due non linearity in power amplifier. Low PAPR sequences consumes less power. Thus system becomes power

efficient.

Cyclic Redundancy Check... 449

6 Conclusions

CRC computation using BYB, LUT and our proposed IPC-LUT approaches are implemented on Freescale

SC140 architecture and compared the machine cycle counts. Our results shows that, CRC computation using

proposed IPC-LUT approach drastically reduces machine cycle count compared to conventional BYB and LUT

approach. We have also developed optimized inline assembly code for CRC on SC140 architecture using our

proposed IPC-LUT approach and tested for machine cycle count. It takes only 45 machine cycles. Result shows

that Freescale Star Core SC140 architecture provides better optimization compared to TMS320C6713 architec-

ture. Overall, we hope that our results provide embedded application engineers with better trade off information

of machine cycle consumption, architectural profiling and power level constraints for discrete sequences.

References

[1] Mark Woh1, Sangwon Seo1, Hyunseok Lee1, Yuan Lin 1, Scott Mahlke1, Trevor Mudge1,Chaitali

hakrabarti2, and Krisztian Flautner3 for “Next Generation Challenge for Software Defined Radio”, 1

University of Michigan - Ann Arbor, Ann Arbor MI, USA, 2 Arizona State University, Tempe, AZ,

USA, 3 ARM Ltd., Cambridge, UK, Springer-Verlag Berlin Heidelberg 2007.

[2] Lee H., Lin, Y., Harel, Y., Woh, M., Mahlke, S.A., Mudge, T.N., Flautner, K. “Software defined radio

- a high performance embedded challenge” Conte, T., Navarro, N., Hwu, W.-m.W., Valero, M.,

Ungerer, T. (eds.) HiPEAC 2005. LNCS, vol. 3793, pp. 6–26. Springer, Heidelberg (2005).

[3] Ming Jiang, Member IEEE, and Lajos Hanzo, Fellow IEEE for “Multi User MIMO-OFDM for Next

Generation Wireless Systems”, Proceedings of the IEEE | Vol. 95, No. 7, July 2007.

[4] Luis Munoz, Marta García, Johnny Choque, Ramón Agüero, University of Cantabria Petri Mähönen,

University of Oulu for “Optimizing Internet Flows over IEEE 802.11b Wireless Local Area Networks:

A Performance-Enhancing Proxy Based on Forward Error Correction”, IEEE Communication

Magzine, December 2001.

[5] Ramabadran T V, Gaitonde S S , “A tutorial on CRC computations”, IEEE Micro,

1988, 8(4): 62-75.

[6] Justin Ray, Philip Koopman, “Efficient High Hamming Distance CRC’s for Embedded Networks”,

Carnegie Mellon University, Research Showcase, 2006.

[7] Gam D. Nguyen, “Error Detection Codes: Algorithms and Fast Implementations”, IEEE transactions

on Computer, Vol. 54, No. 1, January 2005.

[8] T A Wilkinson, A E Jones, “Minimisation of the Peak to Mean Envelope Power Ratio of Multicarrier

Transmission Schemes by Block Coding”, HP Laboratories, UK and Motorola, UK, 0-7803-2742-

X/95, 1995 IEEE.

[9] Sen Hung Wang, Chih Peng Li, Kuan Chou Lee, and Hsuan-Jung Su, “A Novel Low Complexity

Precoded OFDM System with Reduced PAPR”, IEEE Transactions on Signal Processing, Vol. 63, No.

6, March 15, 2015.

[10] Yang Jie, Chen Lie, Liu Quan and Chen De, “ A Modified Selective Mapping Technique to reduce the

Peak to Average Power Ratio of OFDM Signal”, IEEE Transactions on Consumer Electronics, Vol. 53,

No. 3, August-2007.

[11] Third Generation Partnership Project Technical Specifications for “3GPP TS 36.211”, V8.1.0 (2007-

11).

[12] Gene Frantz, Texas Instrument, Principal Fellow for “Comparing Fixed and Floating Point DSP’s”.

[13] Dilip V. Sarwate, “Bounds on Crosscorrelation and Autocorrelation of Sequences”, IEEE Transactions

on Information Theory, VOL.IT-25, NO. 6, NOVEMBER1 979.

