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Abstract: Cyclic Redundancy Check (CRC) is widely used error detection technique in many contemporary com-

munication systems such as Fourth Generation (4G) Mobile Communication-Long Term Evolution (LTE) and 

LTE Advanced, Wi-Fi, Wireless LAN. For real time embedded systems, code size (Memory), Processor Ma-

chine Cycle (Speed) and Power are the three important parameters which are needs to be optimized. CRC is 

very effective and simple for error detection but its software implementation is not efficient. This paper presents 

software implementation of CRC using Bit by Bit (BYB) and Look-Up Table (LUT) approaches reported in the 

earlier literature. Using these approaches, we have compared machine cycle requirements for computation of 

CRC-3/5/8/12/16 generator polynomials. We have used TMS320C6713 and Freescale Star Core SC140 archi-

tectures for comparing the machine cycle requirements. Then we have intuitively modified our software imple-

mentations (Based on C program) of LUT using In Place Computation (IPC).This IPC-LUT based CRC compu-

tation is found to be more optimized in terms of machine cycle and memory compared to LUT method. We have 

reduced the machine cycle requirement by 39.47 % using our IPC-LUT approach compared to conventional 

LUT. We have also developed inline assembly code for SC140 architecture using IPC-LUT approach that takes 

only 45 machine cycles for computations. Peak to Average Power Ratio (PAPR) is one of the major drawback 

of contemporary communication systems. For third parameter (Power), we have simply done the analysis to fix 

up the decision criteria for deciding the sequences having low PAPR. 

Keywords: Cyclic Redundancy Check (CRC), Look- Up Table (LUT), Machine Cycles, Peak to Average Power Ratio 

(PAPR), Optimization. 

1 Introduction 

Emerging demands for high data rate services and high spectral efficiency are the key driving forces for the con-

tinued technology evolution in wireless communications. Third generation (3G) mobile communication systems 

have been commercially deployed to meet the initial demand for high data rate. Wireless communication for 

mobile terminals has been a high performance computing challenge. It requires almost super computer perfor-

mance while consuming very little power [1]-[2]. This requirement is being made even more challenging with 

the move to Fourth and Fifth Generation (4G / 5G) wireless communication. Next generation data rates are 

greater than current 3G technology hence it will require more computational power. Leading technologies are 

protocols like 802.16e (Mobile Worldwide Interoperability for Microwave Access-WiMAX) and Third Genera-

tion Partnership Project (3GPP) Long Term Evolution (LTE), LTE [11] which uses Orthogonal Frequency Divi-

sion Multiplexing (OFDM) at core level. A promising modulation technique that is increasingly being adopted 

in the telecommunication field is OFDM [3]. ODFM is a good solution for high speed digital communications. 

But high Peak to Average Power Ratio (PAPR) is a major problem in OFDM [8], [9], [10]. In OFDM, the data 

is spreaded over a large number of orthogonal carriers modulated at lower rates. The carriers can be made or-

thogonal by appropriately choosing the frequency spacing between them. Its advantages are high data rate and 

bandwidth efficiency. To provide high data rate in next generation wireless communication systems, the execu-

tion of all baseband processing algorithms must be done at high speed. The algorithms are implemented at Phys-

ical Layer. The physical layer deals with bit level transmission between different communicating stations. It 

consists of the basics networking hardware transmission technologies of a network. 
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Hence developing the algorithm which will take Minimum Machine Cycles for execution (High Speed), Mini-

mum Code Size (Less Memory) and Minimum Power consumption is of prime consideration. Cyclic Redundan-

cy Check (CRC) is widely used error detection method in data transmission and storage systems. It is simple but 

its software implementation is not efficient. Using CRC for error detection in embedded systems involves trade 

off among Speed (Machine Cycle), Memory (Code Size) and Power consumption. Because many embedded 

systems have significant resource constraints, it is important to understand the available trade off options and 

find the ways to attain better error detection at lower computational cost [6]-[7]. In this paper, we have studied 

the optimization of CRC computations in terms of machine cycle and memory requirement. CRC typically uses 

Galois Field, GF (2) for its operation. It is basically a discrete sequence. Hence we have also done PAPR analy-

sis for discrete sequences for understanding the power constraints. 

2 Physical Layer Context 

The message carried over the physical channel is protected by various Forward Error Correcting Codes (FEC) in 

the physical layer. With FEC, redundant parity bits are added to the message, and these bits allow the receiver to 

detect and correct the errors. In the channel coding process CRC is appended to the input data packet and then 

passed to the FEC encoder. After encoding, puncturing is performed to increase the data rate followed by the 

interleaver to distribute the burst error. The scrambler introduces the pseudo random sequence into the incoming 

bit stream. This avoids the occurrence of long streams of zeros or ones and also provides better synchronization. 

At the receiver side exactly opposite operations are performed to get back the original information bits. The 

flow of data through different channel coding blocks can be referred from Fig. 1. The algorithm design and 

software implementation overview is given in the subsequent sections. 

 

 

Fig. 1. Channel Coding Sub-blocks 

2.1 A Novel Strategy for Algorithm Design  

Fig. 1 shows all the sub-blocks of the channel coding block. Blocks are implemented in such a way that it ex-

poses two Application Peripheral Interface (API). One of these is the Initialization API while second is the actu-

al kernel of the block, or the Processing API. Typically, the user of the channel coding block would call the Ini-

tialization APIs for all the blocks at system start up thereby blocking the memory required by various blocks, 

initializing Look Up Tables (LUT) and other data structures. Thereafter, in the steady state operation, the user 

would call the Processing API as and when required. Fig. 2 shows the call sequence for these APIs: 

 

 

Fig. 2. Call Sequence of the Channel coding APIs 
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2.2 Algorithm Testing Framework  

The test framework includes a set of test stub applications along with configurable parameters specific to the 

routines which are to be tested. Typically, a developed routine would be tested by building a project using 

Freescale CodeWarrior IDE. The input and reference output test vectors will be provided. The test stub applica-

tion will call the Initialization API and then will pass the input test vector to the routine being tested (Processing 

API). It will then compare the output generated by the routines against the reference output test vector calculated 

using hand computations. It will provide the test results as SUCCESS or FAILURE depending on the final com-

parison. The test vectors (i.e. reference input and output) would be saved as ASCII text files with typically one 

value per line. The values can be unpacked bits (0 or 1), packed bytes/words (unsigned bytes/words) or soft val-

ues (signed bytes). The nature of values would depend on the input/output format of the routine to be tested. Fig. 

3 shows flow chart for test stub. 

 

 

Fig. 3.  Flow Chart for Test Stub 

3 CRC 

The CRC length that can be inserted has five different values: 3, 5, 8, 12 and 16 bits. Probability of undetected 

errors is low, when length of CRC is high.  

Basic CRC computation algorithm: Bit by Bit Computation (BYB) [5] 

     

1. Check MSB of data bit. 

2. If MSB bit =1, then XOR the data with CRC poly and left shift by 1. 

3. If MSB bit=0, then only shift data to left by 1. 

4. After processing all bits, remainder is CRC. 
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Table 1. CRC polynomials 

CRC Polynomial 

CRC-3 1 + D + D3 

CRC-5 1 + D + D2 + D3 + D5 

CRC-8 1 + D + D3 + D4 + D7 + D8 

CRC-12 1 + D + D2 + D3 + D11 + D12 

CRC-16 1 + D5 + D12 + D16 

3.1   Software Implementation 

Optimized Data Structure  

typedef struct 

{ 

   UINT1 *u1InpPtr; // Pointer to Input buffer 

   UINT2 u2InLength; // Length of input data in bits  

   UINT2 u2CrcPolyLen;// Length of the CRC polynomial  

   UINT2 u2CrcPolyEq; //CRC Polynomial (Drop MS bit)  

   UINT2 u2CrcLut [256]; // Lookup Table for the CRC  

} stCrc; 

Output buffer pointer and output length parameters are not used in final optimized data structure. u2CrcLut pa-

rameter of structure stores the 256 entries corresponding to CRC for input byte varying from 0x00 to 0xFF. 

Length of each entry is equal to length of CRC polynomial. CrcLutGenerator ( ) function generates the LUT [5] 

specific to the CRC polynomial. As a part of initialization, members of the stCrc structure are initialized and the 

LUT is populated by calling the CrcLutGenerator () function. The structure parameter u1InPtr and u2InLength 

are initialized by user. 

 

Pseudo Code: 
INT2 CrcInit (stCrc *crc, UINT2 u2CrcPolyLen, UINT2 u2CrcPolyEq) 

{  

   IF (crc=NULL) THEN 

       RETURN (FAIL)                       

   crc->u2CrcPolyLen = u2CrcPolyLen; // Assign the   

                         Poly length to structure 

  //In the polynomial passed, LSB has D(0)and MSB has  

    D(N),the function requires LSB to have D(N)and     

    MSB to have D(0).Invert the polynomial for  

    compatibility and initialize the structure with   

    inverted polynomial (MSB becomes LSB) 

   crc->u2CrcPolyEq = inverted u2CrcPolyEq  

 

   CrcLutGenerator (crc) //Call the function to  

                           generate the LUT  

   RETURN (SUCCESS)     

} 

The CRC encoder computes the CRC of the input message and appends it at the end of the input buffer. It pro-

cesses one byte at a time and uses pre-computed values stored in the LUT. 

CRC Encoder: 

Pseudo Code: 

 
INT2 CrcEnc (stCrc *crc) 

{       
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u2Iteration = crc->u2InLength /8; //Determine the no. of  

                                   i/p data bytes 

u1NoOfBitsLeft = crc->u2InLength % 8; // No. of bits not                                

                                   falling in the byte  

                                   boundary 

   IF (u1NoOfBitsLeft) THEN  

      u2Iteration++ 

   ENDIF      

   u2Reg = 0  // Initialize the processing  

                           register 

   FOR i= 0 to u2Iteration DO 

       Read next input data byte 

       XOR the input data byte with lower order byte of  

       u2Reg to get an INDEX 

       Shift u2Reg 8 bits to the right 

       XOR u2Reg with the contents of LUT at INDEX  

       location 

   ENDFOR 

Append the CRC to input buffer with lower byte first followed by upper byte 

RETURN (crc->u2InLength + crc->u2CrcPolyLen); //Returns  

                     the total no. of bits in the output 

} 

CRC LUT Generator 

It performs the bitwise operation to compute the CRC for all the input byte varying from 0x00 to 0xFF. 

Pseudo Code: 
static INT2 CrcLutGenerator (stCrc *crc) 

{   IF (crc=NULL) THEN 

      RETURN (FAIL) 

   Compute the 16-bit mask as per the length of CRC 

   polynomial     

   FOR INDEX = 0 to 256 DO 

      Load the u2Reg with INDEX value 

      FOR i= 0 to 8 DO 

        IF (u2Reg & 0x0001) THEN  

            u2Reg = (u2Reg >> 1) ^ u2CrcPolyEq  

        ELSE  

            u2Reg = u2Reg >> 1 

        ENDIF 

      ENDFOR 

      Mask the contents of u2Reg 

      Copy the u2Reg in LUT at INDEX value   

   ENDFOR 

   RETURN (SUCCESS) 

4 Results and Discussion 

Table 2 provides the machine cycle requirements for the computation of different variants of CRC on Freescale 

SC140 architecture using conventional BYB, LUT [5]-[7] approaches and out proposed IPC-LUT approach. Op-

timization level of 0 and 3 can be set in SC140 Integrated Development Environment (IDE) project setting op-

tions. Finding the number of machine cycles, memory consumed, utilization of resources (shifters, Multiply and 

Accumulate-MAC etc) present in architecture for developed software program is termed as “Profiling”. BYB is 

traditional approach which consumes more machine cycles compared to LUT. 
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Table 2. CRC optimization results obtained using Freescale SC140 architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In LUT method, CRC for all bytes are precomputed using BYB (Total CRC’s 256) and stored in the memory 

and then the 8-bits of message which are to be encoded is used as an index to get the corresponding CRC values 

from stored memory and appended to it. In our proposed IPC-LUT approach, in place computation is used to re-

duce the memory reference pointer and hence reduces machine cycle requirements drastically (Machine cycle 

reduces from 114 to 69, around 40% reduction is achieved).  

 In place computation implementation is to make the processing in-place, i.e. no separate output buffer. 

The computed CRC is appended to the end of the input buffer. In LUT, separate input and output buff-

ers were used. 

UINT1 *u1InpPtr; // Pointer to Input buffer; UINT1 *u1OutPtr; // Pointer to Output buffer 

Copying input to output buffer and the indexing the memory for precomputed CRC values was creating 

lot of memory read and write operation. This was consuming huge machine cycles. In proposed IPC-

LUT, we have reduced these memory references using in place computation. This has also reduced the 

memory requirement to some extent.    Removed following members of the stCrc structure 

o output buffer pointer 

o output length 

 In LUT approach, the members of structure stCrc were being directly accessed from inside the loop, 

resulting in extra memory reads. For IPC-LUT, pointer to the input buffer and pointer to the LUT are 

stored in local variables initially. The local variables are then accessed inside the loop wherever re-

quired. Due to this reduction in machine cycle count was observed. Finally, IPC-LUT approach and 

Data Arithmetic & Logical Units (DALU) available in SC140 architecture are properly utilized to de-

velop highly optimized assembly routine for CRC computation. CRC kernel takes only 45 machine cy-

cles for computation. 

 

Table 3. Comparison of machine cycle consumption for LUT approach on Freescale’s SC140 and TI’s 

TMS320C6713 architectures 

CRC Calculation us-

ing Look Up Table 

(LUT) Approach 

Machine Cycles Consumed 

CRC-3 
CRC-

5 
CRC-8 CRC-12 CRC-16 

SC140 Architecture 114 114 114 114 114 

TMS320C6713  

Architecture 
303 303 303 303 303 

 

CRC Variants Optimization 

Level 

Cycles 

( 

release 

0.01) 

Bit by 

bit 

(BYB) 

Cycles 

(release 

0.02) 

(LUT) 

Cycles 

(release 

0.03) 

In-place 

Computation 

(IPC-LUT) 

Assembly 

Implementation 

using SC140 

CrcEnc_3_5 

(POLY_LEN=3) 

0 2511 914 - - 

3 286 114 69 45 

CrcEnc_3_5 

(POLY_LEN=5) 

0 2473 914 - - 

3 286 114 69 45 

CrcEnc_8_12 

(POLY_LEN=8) 

0 2325 914 - - 

3 265 114 69 45 

CrcEnc_8_12 

(POLY_LEN=12) 

0 2235 914 - - 

3 265 114 69 45 

CrcEnc_16 

(POLY_LEN=16 

0 1783 914 - - 

3 206 114 69 45 
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The same code is executed on two different architectures for understanding the profiler performance. From , it is 

clear that, machine cycle count drastically reduces on SC140 architecture. For designing the embedded 

applications, capability of processor architecture is equally important for porting the optimized algorithm. 

5 Low PAPR Discrete Sequences 

The PAPR is defined as the ratio between the maximum instantaneous power and the average power, defined by 

[8]-[10] 

      
     

        

 

PAPR can be measured either in continuous time or in discrete time [10]. 

PAPR= 
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Table 4. PAPR values of all possible data blocks for an OFDM signal with four 

                                                                    Subcarriers and BPSK modulation 

 

 Data 

Block (X) 

PAPR 

(dB) 

Data 

Block( X) 

PAPR 

(dB) 

[1,1,1,1] 6.0 [-1,1,1,1] 2.3 

[1,1,1,-1] 2.3 [-1,1,1,-1] 3.7 

[1,1,-1,1] 2.3 [-1,1,-1,1] 6.0 

[1,1,-1,-1] 3.7 [-1,1,-1,-1] 2.3 

[1,-1,1,1] 2.3 [-1,-1,1,1] 3.7 

[1,-1,1,-1] 6.0 [-1,-1,1,-1] 2.3 

[1,-1,-1,1] 3.7 [-1,-1,-1,1] 2.3 

[1,-1,-1,-1] 2.3 [-1,-1,-1,-1] 6.0 

 

From above table, it is clear that high value of PAPR (6 dB) exist for sequences 

[1, 1, 1, 1], [1, -1, 1, - 1],  [-1, 1, -1, 1] and [-1,-1,-1,-1]. These sequences have specific patterns of bits like con-

tinuous 1 and -1, alternate 1 and -1. There is no randomness present in these sequences. Hence more randomness 

in the sequence, indicates less PAPR value. Now the question is how to determine the randomness present in the 

sequence. We have worked on following testing criteria that provides good measure of randomness [13]: 

Test 1: The first approach to judge the randomness of the sequence is the bit occurrence test. If number of ones 

is very close to number of zeros then that binary sequence exhibits good randomness. 

Let sequences be p= p1, p2, p3,…….., pn then 

  

                                                        

   measures the difference between number of ones and zeros. If    is small, then sequence has good random-

ness. 

Test 2: Second test is to determine the number of “Runs” present in the sequence. Run is subsequence with con-

tinuous o or 1. If number of runs is approximately equals to half of sequence length then that sequence has good 

randomness. 

     

                 

     

   

 

 

Where,                and k=1, 2,…..n 

Smaller the   , nearer the number of runs approximate to length n/2. However, consider the sequence 

110011001100. It’s a short cycle sequence with very high PAPR. But for this sequence number of runs equals to 

half of sequence length and number of ones equals to number of zeros. Hence if we apply first two test on this 

sequence then our decision will be wrong. Therefore, the decision criteria should be amended.  
Test 3: To find aperiodic autocorrelation of sequence [13] R (i). But    is nothing but R (i) calculated at i=1. R 

(i) must be very small to have good randomness in the sequence. 

 

                       

     

   

 

Hence sum of   ,    and    must be small, to have good randomness in the sequence. 

Now our decision criteria for generating the low value PAPR sequences is as follows: 

     
     

     
  

Forward Error Correction (FEC) generates the sequences. But these sequences should have low value of Peak to 

Average Power Ratio (PAPR).Above decision criteria can be used for monitoring the sequences that exhibits 

low PAPR. We transmits only those sequences or codewords that has low PAPR to avoid the distortions caused 

due non linearity in power amplifier. Low PAPR sequences consumes less power. Thus system becomes power 

efficient.  
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6 Conclusions 

CRC computation using BYB, LUT and our proposed IPC-LUT approaches are implemented on Freescale 

SC140 architecture and compared the machine cycle counts. Our results shows that, CRC computation using 

proposed IPC-LUT approach drastically reduces machine cycle count compared to conventional BYB and LUT 

approach. We have also developed optimized inline assembly code for CRC on SC140 architecture using our 

proposed IPC-LUT approach and tested for machine cycle count. It takes only 45 machine cycles. Result shows 

that Freescale Star Core SC140 architecture provides better optimization compared to TMS320C6713 architec-

ture. Overall, we hope that our results provide embedded application engineers with better trade off information 

of machine cycle consumption, architectural profiling and power level constraints for discrete sequences. 
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