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Abstract: Shot change detection is a significant step in content based video indexing and retrieval. There are 

different types of transitions between the shots. Most of the shot change detection algorithms deal with these 

transitions separately. In this paper, we have carried out the analysis of shot change detection methods like pixel 

difference, histogram difference and Chi-square test and our proposed method. The proposed shot change 

detection method is integration of pre-processing and KLT (Kanade-Lucas-Tomasi) corner detection technique. 

In the pre-processing stage, adaptive local thresholding is used to eliminate non-boundary segments and only 

candidate segments are retained. The candidate segments are refined using bisection-based comparisons to 

eliminate non-boundary frames. Only refined candidate segments are preserved for further detections; hence, the 

speed of shot change detection is improved. KLT corner detection approach is used for obtaining key points in 

the frames from candidate segments. Shot change is detected if the key points between successive frames are not 

matching. Experimental results indicate that the proposed method is effective in terms accuracy and also helps 

in accelerating the shot change detection process, which can lead to better and fast retrieval of video.  

Keywords: Shot change detection, Corner detection, Adaptive threshold. 

1 Introduction 

With the rapid advances in multimedia and internet technologies, video data is being uploaded at an explosive 

rate. It is amazing to note that thousands of new videos are being uploaded to YouTube everyday. With such 

huge video data resources, sophisticated video database systems are needed to enable efficient browsing, 

searching and retrieval. Shot change detection is a technique of detecting changing frames in video and is one of 

the important techniques required for efficient management of video data [1-3]. The ever growing amount of 

digital videos poses new challenges in Content Based Video Retrieval (CBVR) as vast repositories are being 

built at an increasing pace. A key step for managing a large video database is to detect the shot change. A shot is 

a sequence of frames generated during a continuous camera operation and represents a continuous action in time 

and space. Video editing procedures produce abrupt and gradual shot transitions. A hard cut is an abrupt shot 

change that occurs in a single frame. A gradual transition occurs over multiple frames and is the product of fade-

ins, fade-outs, or dissolves. 

A hard cut is instantaneous transition from one shot to the subsequent shot. Gradual Transition (GT) occurs over 

multiple frames, which is generated via the application of more elaborated editing effects involving several 

frames. Gradual transition can be further classified into fade out/in(FOI) transition, dissolve transition, wipe 

transition,  and other transitions, according to the characteristics of the different editing effects [1-3]. Different 

researchers have proposed separate methods for abrupt and gradual transition detection. In our research we have 

developed an algorithm which can detect both abrupt and gradual transitions. The shot change detection process 

is the identification of considerable discontinuities in the visual-flow of the frame sequence. In this paper, we 

have analysed the performance of shot change detection methods such as pixel difference, histogram difference 

and Chi-square test and proposed an effective method for shot change detection using pre-processing and KLT 

corner detection.  

In the first stage, pre-processing of the video is done to remove the redundant frames. The pre-processed video 

consisting of candidate segments is used further for KLT corner detection. Shot change is detected if the key 

points between successive frames are not matching. Pre-processing stage is effective in reducing the detection 

time.  
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Experiments on different types of video data show the proposed method can provide high speed and accuracy 

for detecting both abrupt and gradual transitions. Traditionally, video shot segmentation approaches rely on 

threshold method, which do not generalize for different types of video.   

2 Related Work 

In the last decade, significant work has been done in the area of video processing to partition a given video into 

shots. The basic idea of most of the techniques is to measure and compare the similarities between consecutive 

frames. Early work on shot change detection mainly considered abrupt shot transitions. A comprehensive survey 

of comparison and performance evaluation of existing shot change detection algorithms is given in [5-8]. In [4], 

shot detection techniques are reviewed and a statistical detection technique based on motion feature is proposed. 

Color histogram is a commonly used feature for detecting gradual transitions [9-12]. Luminance [13,14], 

chromaticity [15], motion [4] and edge [5] information have also been used for shot boundary detection. 

Boreczky et al. [16] segmented the video by using audio-visual features and Hidden Markov Models (HMM) to 

hypothesize the various shot transitions. The problem of shot change detection is approached by Hanjalic [17] 

using a probabilistic approach. For detecting abrupt transitions, adjacent frames are compared, while for gradual 

transitions, frames separated by the minimum shot length are compared. The a priori likelihood functions of the 

discontinuity metric are obtained using manually labelled data. Thus, different likelihood functions are 

estimated for all types of shot transition. Gradual transitions are generally more difficult to detect due to camera 

and object motion.  

Detection of gradual transitions, such as fades and dissolves is examined in [9-11]. The approach proposed by 

Lienhart [18] detects dissolves with a trained classifier, operating on either YUV color histograms, magnitude of 

directional gradients, or edge-based contrast. The classifier detects possible dissolves at multiple temporal scales 

and merges the results. The classifier is trained using a dissolve synthesizer, which creates artificial dissolves 

from any available set of video sequences. The performance is shown to be superior when compared to simple 

edge-based dissolve detection methods. Cernekova et al. [19] performed Singular Value Decomposition (SVD) 

on the RGB color histograms of each frame to reduce the dimensionality of feature vector to ten. Initially, video 

segmentation is performed by comparing the angle between the feature vector of each frame and that of the 

average of feature vectors of the current segment. If their difference is higher than a static threshold, a new 

segment is started. Segments whose feature vectors exhibit large dispersion are considered to depict a gradual 

transition between two shots, whereas segments with small dispersion are characterized as shots. The main 

problem with this approach is the static threshold applied on the angle between vectors to detect a shot change, 

especially in the case of large intrashot content variation and small intershot content variation. A survey of core 

concepts underlying the different schemes of shot boundary detection is presented in [6], while a comprehensive 

comparison of different shot change detection algorithms is discussed in [5].  

Lo and Wang [35] used clustering algorithms to monitor frame similarity. When certain frames are identified as 

belonging to a scene change, adjacent frames are marked as gradual transitions while the remaining frames are 

detected as cuts. In [36], methods for detecting shot boundaries in video sequences and for extracting key frames 

using metrics based on information theory are proposed. In [37], a moving query window of frames is 

maintained and the average frame similarities of the frames of the left side and right side of the center frame are 

calculated, respectively. Then the ratio of these two similarities is monitored and used to detect gradual 

transitions. 

In all the above mentioned algorithms, each frame has to be scanned at least once for feature extraction and 

comparison. In the algorithms proposed in [32] and [33], each frame has to be scanned for several times in GT 

detection, with different frame step or transition centre in each time. Despite the excellent detection accuracies, 

the computation complexity is considerably high, which is the most prominent limitation in real-time 

applications. The problem of computation complexity in shot detection is rarely addressed. An elaborate review 

of shot detection algorithms on the computation complexity criterion is given in [34]. It is pointed out that this 

criterion is of great significance, especially in uncompressed videos that contain a huge quantity of data. In order 

to make a trade-off between detection accuracy and computation complexity, a fast shot detection algorithm is 

required. Our motivation is to propose an integrated approach for hard cut or GT detection. Thus, the fast shot 

detection framework is our main contribution, as it is beneficial to real-time video applications with high speed 

and reliable accuracy. 

The rest of the paper is organized as follows: Section 3 explains the traditional shot change detection methods. 

Proposed shot change detection method is explained in Section 4. Experimental results and analysis is presented 

in Section 5. Finally in Section 6 we give the conclusion. 
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3 Shot Change Detection Methods 

3.1 Pixel Difference 

A simple method to check whether two frames are significantly different is the direct comparison of the pixels 

in the consecutive frames [20-22]. If the number of different pixels is large enough, there must be shot change at 

these frames. The pixel-based method is easy and fast. But it is extremely sensitive to local motion, camera 

motion and minor changes in illumination [23,24]. The effect of motion is reduced by using 3x3 averaging filter 

before pixel-wise comparison. The pixel difference PD is defined as  
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Pair wise pixel comparison [25,26]  is a straightforward and simplest way, in which the number of pixels 

changed from a frame to the next is counted. When the total percentage of the pixels has changed, a shot change 

is detected. In this method pixel intensity of the two adjacent frames is calculated. Many color space systems, 

such as RGB, HSV, YIQ, HVC, or L*u*v, can be used for this comparison. When the frames are balck and 

white, gray values are calculated. In the next step, difference of pixel intensities of two frames is determined and 

it is compared against the threshold. Shot change is detected if the difference is greater than the threshold. 

Rather than its simplicity, a disadvantage of this method is that it is quite sensitive to fast object movements and 

the camera motion - fast camera panning or zooming and to noise.     

3.2 Histogram Difference 

Histogram difference based methods are generally used for detecting abrupt transitions. These methods use  the 

statistics of the luminance and color. Xue L. et. al. [27] proposed a shot change detection measure in which 

features are obtained from the color histogram of the hue and saturation image of the video frame. Vasileios 

Chasanis et. al.[28] chose normalized RGB histogram as the feature vector in his shot change detection system. 

The advantage of the histogram-based shot change detection is that it is quite discriminant, easy to compute, and 

mostly insensitive to translational, rotational, and zooming camera motions. Hence it is  widely used. The 

weakness of the histogram-based shot boundary detection is that it does not incorporate the spatial distribution 

information of various color, hence it  fails in the case when two frames have similar histograms but different 

content. The histogram difference is defined by 
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Where, Hi[j] and Hi+1[j] denote the histogram value for the i
th

 frame and (i+1)
th

 frame, respectively, and j is one 

of the G possible gray levels. The histogram difference method is less sensitive to object motion than pixel 

difference. The main limitation of this method is that two different frames may have similar histograms 

irrespective of the contents of frames. Histograms are also sensitive to light intensity changes and quantization 

errors.  

Zhang et.al. [38] proposed a histogram method and stated that this method is a good settlement between 

accuracy and speed. A histogram of 64 bin gray level is computed over each image. If the difference of 

histograms between consecutive frames exceeds a threshold then a cut is detected. Some researchers have  used 

DC values of Y, Cb, Cr, along with other features, to form a feature vector for each video frame for shot 

boundary detection purpose.  
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3.5 Chi-Square Test 

Nagasaka and Tanka [29] found that when image is broken into 16 regions using Chi-square test on color 

histogram of those regions then better results for shot change detection are observed. Chi-square test is defined 

as 
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Where, Hi[j] denotes the histogram value for the i
th

 frame and j is one of the G possible gray levels.  

4 Proposed Shot Change Detection Method  

There are many methods of shot change detection. Very few of these methods  focus on detecting both abrupt 

and gradual transitions. In this paper we have proposed an algorithm which can detect both these transitions. 

The proposed shot change detection method is implemented in two steps i) Pre-processing and ii) KLT Corner 

Detection 

4.1 Pre-processing 

Pre-processing of video is done in two stages a) Adaptive local thresholding and b) Bisection based comparisons  

Adaptive local thresholding: 

 To increase the efficiency of shot change detection algorithms, redundant frames are removed. This leads to 

reduction in computation burden. Hence instead of scanning the sequence frame by frame, the redundant frames 

are skipped without affecting the accuracy.  Consecutive frames that locate in a short temporal segment within a 

shot usually are highly co-related. Hence, if the first and last frames of a segment show great similarities, a 

conclusion is drawn that it contains no boundary. As a result, this non-boundary segment is skipped. On the 

contrary, for the segment that spans two shots, the distance between the first and last frames is quite large. In 

order to filter out nonboundary segments, adaptive local thresholding technique is used in the proposed 

algorithm. The preserved segments are labelled as candidate segments that may contain shot changes, large 

motions or other effects, and further verifications are required. For non-boundary segments, the computation 

intensive feature extraction and comparison processes can be eliminated. In thresholding process the video 

sequence is first divided into segments consisting of 20 frames [30]. The reasons that we select 20 as the length 

for distance calculation are as follows. Firstly, it can achieve a satisfactory trade-off between detection accuracy 

and speed. If the length is reduced to 10, the number of distance calculations is doubled, which results in the 

decrease of detection speed.  

Moreover, the distance calculated in GT using a small length is quite small, and therefore some GT segments 

may be discarded in thresholding. On the contrary, using larger length leads to higher distances in some non-

boundary segments. The distance of active non-boundary segment (e.g. with motion) can be as high as those of 

boundary segments. In this way, boundary and non-boundary segments become non-separable. Secondly, it is 

observed in a large number of sequences that 20 frames is the shortest duration of shot. Therefore, a segment of 

20 frames contains at most one shot boundary, which simplifies the bisection-based comparisons. 

 For each segment, the distance between the first and last frames is calculated, and the pixel-wise distance of the 

luminance component is used. The distance calculation for the nth segment is as follows: 
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Where Flum(x, y; t) denotes the luminance component of the pixel in the position of (x, y) in frame t, the distance 

of the nth segment in eq.(4) can be denoted as d20(n). Every ten segments are then grouped together to form a 

basic thresholding unit, and all the segments within this unit share one threshold. The segments whose distance 

values are smaller than the corresponding local thresholds are classified as non-boundary segments. The local 
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threshold for each unit is defined adaptively according to the local and global statistics of distance values. The 

local thresholds (TL) for each unit can be computed as follows: 

TL=  µL + 0.6 µGσL/ µL 

 
(5) 

Where µ G denotes the global mean value, namely the mean of all the distance values.  µ L denotes the local 

mean value, namely the mean of the distance values in the thresholding unit. σ L denotes the local standard 

deviation. The segments whose distance values satisfy the following criterion are also classified as candidate 

segments 

(d20(n) > 3d20(n-1)   or   d20(n) > 3d20(n+1))   and   d20(n) >   µG                                              (6) 

 False positive is much better than false negative in thresholding. The reason is that all candidate segments have 

to go through further detections where the false positive ones can still be eliminated, while false negative 

segments that do contain shot boundaries are discarded directly as non-boundary segments. Hence, post-

verification is implemented as shown in eq. (6).  

Bisection-based comparisons: 

Some non-boundary frames may still exist in candidate segments. For example if a hard cut occurs at the fifth 

frame of a 20-frame segment, hence last ten frames should be removed. Hence, bisection-based comparisons are 

performed in each candidate segment to make further eliminations of non-boundary frames. For each candidate 

segment, the distance values between the middle frame (i.e. the tenth frame) and the first as well as the last 

frames are calculated. After the pre-processing process, a large percentage of non-boundary frames are removed 

to reduce the scopes of hard cut and GT detections.  

4.2 KLT Corner Detection  

Corners are local image features characterised by locations where variations of intensity function f(x,y) in both 

X and Y directions are high. Both partial derivatives fx and fy are large. KLT [31] searches for points where 

variations in two orthogonal directions are large based on local structure matrix. 
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Derivatives of intensity function are calculated in each point. Then, the entries of the matrix Cstr are obtained for 

D x D neighbourhood of R. Each of the entries is smoothed by Gaussian filter. The diagonal entries will be the 

two Eigen values. 
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As C is symmetric and positive, both the eigen values λ1 and λ2 are non-negative, and at the location of a corner, 

λ1 >= λ2 > 0 where both eigen values are large. The KLT algorithm compares the smaller eigen value λ2 to a 

threshold value λmin and if greater saves (x,y) in a potential corner list L. Then it sorts L in decreasing order of λ2 

and scan the sorted list from top to bottom,, selecting points in the list in sequence and removing points that fall 

inside the neighbourhood R of any selected points, until having the required count of features. 

In our work, we have compared the adjacent frames by extracting key points in them instead of using low level 

features. Shot transition is detected if the key points do not match. With integration of pre-processing and this 

approach, we can detect both abrupt and gradual transitions. Key points are detected using KLT corner detector. 
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5 Experimental Results and Analysis 

The performance analysis of shot change detection methods is done using a variety of test video clips 

downloaded from Youtube. In order to make a comprehensive evaluation, totally 20 test videos from six 

different categories, including documentary, movie, news, sports, underwater, and wild life are tested. The test 

set contains hard cuts and gradual transition effects that consist of dissolve, fade in and out, wipe and computer-

generated effects. These 320x240 videos have 30 frames per second. The test videos were viewed frame by 

frame and the numbers of shots were determined manually. The number of shots obtained by pixel difference, 

histogram difference and Chi-square test are compared with number of shots obtained by the proposed 

algorithm. As given in Table 1, the number shots manually detected closely matches the number of shots 

obtained by the proposed algorithm. In the other methods more shots are detected hence more key frames will 

be extracted. Feature vector size of these key frames needed for retrieval purpose would be larger which 

requires more computational power and time. Hence, the proposed method is effective in CBVR.    

 Figure 1 shows the shot change frames detected by histogram difference method for video clip 493. Figure 2 

shows the shot change frames for the same video detected by proposed method. 

 

Fig. 1. Shot change frames detected by Histogram Differemce method for video clip 493 

Table 1.  Number of Shots for various Shot  Detection Methods 

Video 

Name 

No. Of Shots 

 

Manually 

Detected  

 

Pixel 

Difference 

Histogram 

difference 

Chi 

square 

test 

Proposed 

method 

corner 

detection  

Clip 493 13 41 12 3 16 

CHI 21 38 58 8 21 

Horses 14 44 17 5 12 

Clip 78 9 38 3 3 9 

W6 11 10 16 9 11 

W3 40 37 13 9 33 

W1 24 53 37 95 24 

Amazing  37 146 35 50 34 
 

It is observed that the shots are correctly identified by proposed algorithm. In pixel difference method, more 

false positives are observed due to fast object and camera motion. We have also analysed the performance of 

pixel difference and Chi-square test in YUV color space using only Y component and observed that Chi-square 

test gives better results than pixel difference. However, the performance of the existing shot change detection 

methods is poor due to disturbances caused by fast camera and object motion. 
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Fig. 2. Shot change frames detected by proposed method for video clip 493. 

6 Conclusions 

Detection of shot boundaries is a major challenge in CBVR systems. Videos contain abrupt as well as gradual 

transitions. Therefore, it is a challenging task to develop a method that can detect both these transitions. To 

address this challenge, we have proposed an algorithm for shot change detection using pre-processing to 

eliminate redundant frames followed by feature points extraction using KLT corner detector. This is important 

for accurate and robust detection of shot boundaries and in turn critical for high-level content based retrieval of 

video. We have also compared performances of our algorithm and traditional algorithms like pixel difference, 

histogram difference and Chi square test. It is observed that pixel difference method gives large number of shots 

as it takes all the frames in the video. Even if we modify the threshold, more shots are detected. Histogram 

difference gives comparatively less shots but not close to actual number of shots.  Very less number of shots are 

observed with Chi square test, which loses many key frames reducing retrieval accuracy. The numbers of shots 

detected by our proposed method are almost same as manually detected shots for most of the videos. The 

variation in the number of shots is observed in videos with fast object motion. In our future work, we will 

improve the algorithm for the same. Also, we will carry out the analysis using more detection methods, using 

larger datasets and more video content types.     
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