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Abstract: The objective of the present paper is to deal with the solution of the third order non-linear boundary 

layer equation governing the magneto hydrodynamic (MHD) flow of a viscous fluid over a stretching permeable 

surface using the homotopy analysis method (HAM). The solution obtained has been constructed in the form of 

series, the convergence of which has been examined carefully by way of plotting convergence control curves. 

The effect of suction/injection and magnetic parameters on the skin-friction parameter, velocity profiles and 

stream function have been studied. The results obtained in the present analysis have been compared with the 

corresponding available results of other researchers. It is observed that the numerical values of the skin-friction 

for different values of mass transfer and magnetic parameters are convergent and agree well with the earlier ex-

isting numerical values. The accuracy in the results shows that the HAM is a very proficient and easily applica-

ble technique for solving differential equations with strong non-linearity.  
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1 Introduction 

In many areas of applied engineering and industry, we often come across with the boundary layer flow involv-

ing a viscid and incompressible fluid over a stretching sheet. This kind of flow process is of interest in the fields 

of chemical and metallurgical engineering. That is why, it has been widely studied by Anderson et al. [1]. How-

ever, from industrial point of view, the magneto-hydrodynamic (MHD) flow problems have recently become 

more significant. Specifically, many metallurgical processes include the cooling of continuous filaments or 

strips by extracting them through a motionless fluid. In such metallurgical processes, the fluid properties of the 

final product would certainly depend on the rate of stretching and the liquid used for cooling. During the process 

of extracting, these strips sometimes get stretched. It is worth to mention the example of extracting, thinning and 

strengthening of copper wires.  

The characteristics of the final product, however, depend on the rate of cooling to a great extent. A care has to 

be taken while extracting such strips, in order to control the rate of cooling, in an electrically conducting fluid 

corresponding to the magnetic field, thereby achieving the expected outcome with desired characteristics. There 

are many other important applications of hydromagnetics such as extraction of molten metals from the non-

metallic inclusions by using magnetic field, manufacturing of sheeting material through an extrusion process 

such as hot rolling, glass-fiber manufacturing, plastic sheets through aerodynamic extrusion. 

On account of the afore-mentioned industrial applications, it was Pavlov [2] who made the first attempt to inves-

tigate the MHD boundary layer flow of an electrically conducting fluid over a stretching wall. Subsequently, the 

authors [3-11] have also made their contributions to the proposed problem. Nevertheless, so far only a limited 

attention has been paid by researchers to study the effects of mass transfer parameters e.g. suction and injection 

on the MHD flow over a stretching porous surface. However, the contributions made by authors [3,4,7] are 

worthwhile mentioning in this regard. Their studies, however, are confined only to relatively low values of the 

suction and injection parameters. Thus, the extension of the problem to include large values of the suction and 

injection parameters remained almost unaddressed. This requirement formed the subject matter of the work of 

Pop and Na [12] who made a serious attempt to study the problem of MHD flow of an electrically conducting 

incompressible fluid over a stretched permeable wall using perturbation technique. 

In this study, Pop and Na identified two extreme cases, namely, large suction and large injection. But, Pop and 

Na failed to obtain the solution of the problem for relatively smaller values of the suction and injection parame-
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ters. Prior to [12], Chakrabarti and Gupta [3] although succeeded in finding the exact solution of the problem as 

regards the velocity profiles using the similarity solution method, the approach adopted by them was not gener-

ic. Instead, the approach to find the solution for velocity profiles was solely based on a guess, subject to the sim-

ilarity boundary condition, that the velocity of the flow at infinity is zero. So, the approach of Chakrabarti and 

Gupta is not proficient enough to deal with the solutions of similarity boundary layer equations with strong non-

linearity. 

The objective of the present paper, therefore, begins with the necessity of finding an analytical solution of the 

problem in general by using homotopy analysis method (HAM), so that the effects of suction and injection pa-

rameters with any value, large or small, may be investigated in respect of the obtained solution, especially the 

velocity profiles. 

In recent years, analytical solutions of several non-linear problems have been found by researchers  [13-37] us-

ing HAM which depends on the concept of homotopy in topology (refer [25]). Liao [26], in the year 1992, made 

an elaborate investigation of the HAM. The strength of HAM lies in the fact that it converges to the analytic se-

ries solution of strongly non-linear problems faster than any other existing methods. Further, the rate of conver-

gence and the accuracy of the solution obtained by HAM is not dependent on large/small value of physical pa-

rameter(s) involved in the problem, see the reference [27] for details. Moreover, HAM along with the high 

performance computers and symbolic software leads to a highly accurate analytic solution. The features of the 

flow field have been analysed and the results obtained in this paper have also been compared with the available 

results of [3] and [12]. Our results have been found in precise agreement. 

 
  

Fig. 1: Physical model of the problem 

2 Governing Equations 

Here the two-dimensional flow of an electrically conducting incompressible fluid under the influence of a uni-

form magnetic field    imposed along  -axis has been considered. The Fig. 1 illustrates the physical model of 

the present problem. The flow of the fluid having electrical conductivity   over permeable wall coincides with 

the plane     and the flow is restricted to    . Keeping the origin fixed, the wall is stretched by introducing 

two equal and opposite forces along the  -axis. The governing equations for the flow problem are therefore (cf. 

Pop and Na [12]) 

 

 

where   and   are the velocity components in the directions of  - and  -axes, respectively;   is the kinematic 

viscosity of the fluid, and   is the density of fluid. The boundary conditions are 

                     
              

(3) 

where    is either velocity of injection (    ) or velocity of suction (    ), and    . Here the induced 

magnetic field has been neglected, which is justifiable for a flow at small magnetic Reynolds number (see the 

reference [28], p.45). It is also assumed that the external electric field is zero and the electric field due to polari-

zation of charges is negligible. 
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On introducing the similarity transformations 

                 
 
       

   
 

 
 

 
 
  

(4) 

 

into Eqs. (1)-(3), we obtain the differential equation  

                    (5) 

together with the boundary conditions 

                       (6) 

Here, the primes describe the differentiation with respect to  ,  

  
  

    
 
 

 is either injection (   ) or suction (   ) parameter, and  

  
   

 

  
 is the magnetic parameter. 

3 Homotopy Analysis  

To obtain analytic solution of Eq. (5) subject to the boundary conditions (6), we select   as 

  
  

   
  

  

   
    (7) 

By choosing   as an embedding parameter, we construct the zeroth-order deformation equation as 

                                                , 
                          

(8) 

subject to the boundary conditions 

                                         , 

                  
(9) 

 

where the primes denote the partial derivatives w.r.t.   and 

              
            

   
           

            

   
  

           

  
 

 

  
           

  
 

(10) 

When    , we have from Eq. (8) 

                                                     
                 

(11) 

and when    , we have from Eq. (8) 

                                   
                 

(12) 

Hence,            varies from initial solution       to the exact solution      as   varies from   to  . 

Keeping in mind the rule of solution expression, we here choose      , the initial guess, such that it satisfies 

           and the boundary conditions (6). We select 

        
      

       (13) 

      
      

 
       (14) 

and       . We consider here that the  th-order deformation derivative 

   
             

            

    
   

          (15) 

exists. By using Taylor's formula and Eq. (11), we have 

                    
  

          

  
   

          (16) 

 

 

We assume that both   and   are properly chosen in such a way that the series (16) is convergent at    . 

From Eqs. (12) and (14) at    , we find the following relationship between known initial solution       and 

the unknown solution     : 
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where we define 

                           
  

          

  
       (18) 

In order to find the  th-order deformation equation, we first differentiate Eqs. (8) and (9)   times w.r.t.   and 

then we set     . Finally, we divide it by    to obtain 

                                        (19) 

with the corresponding boundary conditions 

            
           

                         (20) 

and 
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where primes denote the partial derivative w.r.t.  . 

Using Eqs. (14) and (21), we can first calculate       and then by solving linear equation (19) with boundary 

conditions (20), we can find          . In the similar manner, we can calculate       by using Eq. (22) and 

then find          , and so on. 

The first order of approximation of Eqs. (5) and (6), calculated by using MATHEMATICA, is: 

          
 

   
 

  

  
 

  

   
 

 

 

       
 

   
 

   

 
 

  

  
 

  

  
 

   

 
 

  

   
 

   

  
 

 

 
   

(23) 

We obtain an analytical solution explicitly for the proposed problem governed by Eqs. (5) and (6) as 

        
    

            

 

   

 (24) 

  
The solution (24) in the form of infinite series contains two parameters         and         

4 Convergence of the Analytical Solution 

As pointed out by Liao [29], HAM offers flexibility and freedom to choose better values of   and   which in 

turn guarantee the convergence of obtained solution in the form of an infinite series to     . In order to choose 

 , Liao [29] introduced the  -curve which gives the admissible range of the parameter   known as convergence 

region. Further, there exists a best value of the parameter  , for every   belonging to the convergence region, for 

which corresponding series converges fastest. 

The second-order derivative of Eq. (24) w.r.t.   at    , say, 

   
         

  

   

 (25) 

must converge if Eq. (24) converges. By using (25), we can find the value of the skin friction coefficient for any 

value of magnetic parameter   and mass transfer parameter  . 

The  -curves (after 10th order approximation) for the magnetic parameter     and for different suction pa-

rameters are shown in Fig. 2. From the figure, it is clear that the admissible range for the convergence-control 

parameter   is       . 
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Fig. 2: The  -curves for   for     and       (black line),       (dashed line),       (dotted line) 

5 Results and discussion 

 

Table 1: Comparison of the values of         for different values of   and for suction 

  

        

Present 
Chakrabarti 

and Gupta 

[3] 

Pop and 

Na [12] 

Present 
Chakrabarti 

and Gupta 

[3] 

Pop and 

Na [12] 
10th or-

der 

15th or-

der 

20th or-

der 

10th or-

der 

15th or-

der 

20th or-

der 

0 1.41404 1.41421 1.41421 1.41421 - 1.73196 1.73205 1.73205 1.73205 - 

0.5 1.68603 1.68614 1.68614 1.68614 - 1.98965 1.99999 2 2 - 

1 1.98925 1.99999 2 2 - 2.30272 2.30278 2.30278 2.30278 - 

1.5 2.35074 2.35078 2.35078 2.35708 2.83333 2.63459 2.63476 2.63476 2.63476 2.98075 

2 2.73202 2.73205 2.73205 2.73205 3 2.90843 2.99232 3 3 3.5 

2.5 3.13704 3.13746 3.13746 3.13746 3.3 3.38191 3.386 3.386 3.386 3.7 

3 3.56148 3.56155 3.56155 3.56155 3.66667 3.79121 3.79129 3.79129 3.79129 4 

3.5 3.99781 3.99999 4 4 4.07143 4.21094 4.21215 4.21221 4.21221 4.35714 

4 4.44941 4.44949 4.44949 4.44949 4.5 4.64028 4.64568 4.64575 4.64575 4.75 

4.5 4.90749 4.90754 4.90754 4.90754 4.94444 4.98792 5.08938 5.08945 5.08945 5.16667 

5 5.37221 5.37228 5.37228 5.37228 5.4 5.54026 5.54138 5.54138 5.54138 5.6 

 

Table 2: Comparison of the values of         for different values of   and for injection 

  

        

Present 
Chakrab

arti and 

Gupta 

[3] 

Pop and 

Na [12] 

Present 

Chakrabarti 

and Gupta 

[3] 

Pop and 

Na [12] 10th order 20th order 10th order 20th order 

-0.5 1.18604 1.18614 1.18614 - 1.49865 1.5 1.5 - 

-1 0.99855 1 1 - 1.30271 1.30278 1.30278 - 

-1.5 0.85077 0.85078 0.85078 1.20165 1.13741 1.13746 1.13746 1.68889 

-2 0.73198 0.73205 0.73205 0.75 0.98793 1 1 1.21875 

-2.5 0.63741 0.63746 0.63746 0.62592 0.8849 0.886 0.886 0.90048 

-3 0.56151 0.56155 0.56155 0.55144 0.79118 0.79129 0.79129 0.77778 

-3.5 0.49897 0.5 0.5 0.49337 0.71189 0.71222 0.71221 0.69863 

-4 0.44941 0.44949 0.44949 0.44531 0.64568 0.64575 0.64575 0.63574 

-4.5 0.40749 0.40753 0.40753 0.40488 0.58930 0.58945 0.58945 0.58253 

-5 0.37222 0.37228 0.37228 0.37056 0.54129 0.54138 0.54138 0.53664 
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From the Table 1, it is obvious that the skin friction i.e.         increases along with increasing values of mag-

netic parameter ( ) and the mass suction parameter (   ). From the Table 2, it is obvious that the skin fric-

tion i.e.         decreases with increasing values of mass injection parameter (   ) but decreases with de-

creasing values of magnetic parameter ( ).  

Also, from the Tables 1-2, it is obvious that all the values of skin friction derived in the present paper are in 

good agreement with those obtained by Chakrabarti and Gupta [3] and also with the values of skin friction ob-

tained by Pop and Na [12] for large suction (   ) and for large injection (     ) parameters.  

From the Fig. 3, it is evident that the velocity profiles decrease alongwith the increasing values of   . This de-

crease in velocity profile is more pronounced for increasing values of magnetic parameter. In this case, the mass 

transfer parameter   has been taken as zero.  

 

Fig. 3: Velocity profiles in the absence of suction parameter i.e. for     for different values of magnetic parameter 

 

In the Fig. 4, the effect of increasing values of magnetic parameter   on the velocity profiles has again been 

studied. But, unlike the Fig. 3, the value of suction parameter   has been taken as      . Here also, the same 

trend of decrease in velocity profiles with increasing values of magnetic parameter   has been observed. But, in 

this case in which the suction parameter (i.e.    ) has also been effected, the decrease in velocity profiles is 

much quicker. As the magnetic parameter   increases, the Lorentz force which opposes the flow also increases, 

which leads to an enhanced deceleration of the flow.  

 

 

Fig. 4: Velocity profiles for the suction parameter       and for different values of magnetic parameter 

From Fig. 5, it is obvious that like Fig. 4, there occurs a decrease in the velocity profiles with increasing values 

of magnetic parameter   for a fixed value of injection parameter       . But, this decrease in the velocity 

profiles in case of Fig. 5 is slower as compared to that in Fig. 4. 
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Fig. 5: Velocity profiles for the injection parameter        and for different values of magnetic parameter 

From Fig. 6, it is evident that the velocity profiles decrease with the increasing values of suction parameter (i.e. 

   ) for    .  

 

Fig. 6: Velocity profiles in the absence of magnetic parameter i.e. for     for different values of suction parameter   

(   ) 

From Fig. 7, it is clear that there occurs an increase in the velocity profiles with increasing values of injection 

parameter (i.e.    ).  

 

Fig. 7: Velocity profiles in the absence of magnetic parameter i.e. for     for different values of injection parameter   

(   ) 
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6 Concluding remarks 

In the present paper, we have discussed the MHD flow of a viscous and incompressible fluid over a stretching 

permeable surface. An analytical solution in the form of series has successfully been obtained with the use of 

HAM. The results obtained in the present case have been compared with the available results and have been 

found compatible with each other. From the tables, it is evident that the skin friction increases with suction and 

the effects are opposite in case of injection. However, the skin friction increases with   in both the cases of suc-

tion and injection.  

The perturbation technique used by Pop and Na [12] is based on the existence of the large suction (   ) or 

large injection (     ) parameters. Thus, the perturbation technique used by [12] is not applicable for general 

suction/injection parameter   especially for small suction/injection parameters. However, the HAM used in the 

present problem is applicable for general   .  

The velocity profiles also show a decreasing trend with the increasing values of magnetic parameter for a fixed 

suction/injection parameter. But, this trend of decrease in case of injection is slower as compared to that in pres-

ence of suction, thereby proving that the chances of boundary layer flow becoming more stable in case of injec-

tion is less as compared to that in the presence of suction.  
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