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Abstract. An inclusion under a hill would amplify the ground motion tremendously. However, Few 
analytic solutions achieved for this problem have limitations on a special semi-cylindrical hill or a 
underground cavity. Here we derive one for a new model with the wave functions expansion and 
auxiliary functions technique. It is reduced to solving a set of infinite linear algebraic equation using 
Fourier expansion for auxiliary functions based on boundary condition. The solution can be 
degenerated to the ones of the model ignoring the hill or the inclusion. Finally, numerical solutions are 
obtained by truncation of the infinite equations. The results indicate that the ground motion could be 
seen as the superposition of the effect of the inclusion and the hill qualitatively; and when the 
inclusion degenerates to a cavity, amplification frequencies on the hilly boundary can be obtained by 
the wave speed in half-space and the vertical distance between the flat surface and the tunnel. The 
influence of softness and hardness of inclusion and incident angles is also discussed here. 

Introduction 
Analyses show that special surface topographies (e.g. hills, alluvial valleys, canyons) and 

underground topographies (e.g. underground inclusions and cavities) have a complex effect on 
ground motion. This paper will put both types of topographies together, which investigated here 
would be the case of a variable circular-arc hill on top of an underground circular inclusion.  

To study the problem, few previous analytical solutions related to diffraction of SH waves by a hill 
and a subsurface inclusion in the elastic half-space will first be summarized here. The diffraction of 
SH waves by a variable circular-arc hill with a inside concentric circular cavity has been solved [1]. 
The diffraction of SH waves by a semi-cylindrical hill above a subsurface cavity has also been studied 
[2].  

All of the investigations above were confined to a special semi-cylindrical hill or a subsurface 
circular cavity concentric with the hill, and they analyzed the effect without comparing with the 
degraded situations ignoring the underground and surface topography respectively. In this paper we 
obtain the analytical solutions of the scattering of SH wave by a variable circular-arc hill above a 
subsurface inclusion with wave functions expansion, and it can be degraded to the ones without the 
inclusion or without the hill.  

Mathematical model 
The model as shown in fig 1 consists of an elastic, isotropic and homogeneous half-space and a 

circular-arc hill of radius a1 above an inclusion of radius a2. The free surface of the half-space consists 
of a flat surface Γ and a circular-arc hilly boundary L. The boundary of the inclusion is marked as C. 
The vertical distance between origin o1 and the flat surface is d1; the distance between origin o1 and 
origin o2 is d2; and d3=d1+d2 presents the buried depth of origin o2. The height and half-width of the 
hill is h and b. The ratio of h/b is named as height-to-width ratio. The material properties are given by 
the shear modulus μ and the velocity c. The subscript 1, 2 on μ, c designate these constants in the 
half-space and that in the inclusion. 
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The incident SH wave u(i) with incident angle α can be expressed in the Cartesian coordinate x-o-y 
as : 
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Where time factor exp(-iωt) was omitted, and it 
is same for the following equations; cx=c/sinα 
and cy=c/cosα are the phase velocities in the x 
and y direction, respectively; and ω and u0 are 
the circular frequency and amplitude of the 
incident SH wave, respectively. 

The total displacement u in the half-space 
must satisfy the wave equation 
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The traction-free boundary conditions are 
 Γ),(0 ∈= θrσ rz ，  (3) 
 Lθrσ zθ ∈= ),(0，  (4) 
 
Where the radial stress and the hoop stress are 
given by 
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The model is divided into three parts as shown in fig 2, one is circular region ІІ including the hill, 
whose upper and lower boundaries are L andL, one is circular region ІІІ including the inclusion, 
whose boundary is C, and the rest of the model is region І, which has common boundariesL and C 
with region ІІ and ІІІ. 

 
Fig. 2 The division of the solution domain 

 
The displacement field in the three regions can be expressed by  
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Where u(f) represents the free field displacement in the half-space, u(1) represents the scattering 
displacement from boundary－L , u(2) represents the scattering displacement from boundary C, u(3) 

represents the scattering displacement in the region ІІ, and u(4) represents the scattering displacement 
in the region ІІІ. 

For the convenience of the problem, we create three cylindrical coordinates system as shown in fig 
1: (r,θ), (r1,θ1), (r2,θ2). Finally, the displacement and stress continuity conditions on the interface －L  
and C need satisfy the following equations, respectively. 
 Lθrθruθru ∈= ),(),,(),( 1111
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Fig.1 Model 
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Where superscript І, ІІ, ІІІ represent the corresponding region. 

Analytical solutions 
In this section the displacement and stress expression in region І, ІІ, ІІІ in the coordinate system 

(r1,θ1), (r2,θ2) will be obtained for the convenience of solving the boundary equations. 
Region І. The displacement u(f) can be expressed by  

 )()()( rif uuu +=  (10) 

Where u(i) represents the incident SH wave, u(r) represents the reflected SH wave on the flat ground 
surface, u(r) can be written as 
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Inserting u(i), u(r) into equation（10）leads to  
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Where β1=ω/c1, θ4=π/2-α-θ1, θ5=π/2+α-θ1, 1 1i sin
1=e dβ αξ . 

By transform formula  
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Eq. (12) can be written as                                                
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Where ε0=1, ε1,2,3...n=2, and Jn(x) are the Bessel functions of the first kind with argument x and order n, 
and  
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Inserting Eq. (14) into Eq. (5) leads to   
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Where σ0=μ1β1u0, representing the stress amplitude of the incident wave, and 
)()()( 111111111 rβJrβrβnJrβR nnn +−= . 

Similarly, ( )fu ,
2
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r zσ in the coordinate system (r2,θ2) can be expressed as 
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Where 1 3i sin
2 =e dβ αξ   

Eq. (14)~(17) strictly satisfy The traction-free boundary condition (4). 
Next , u(1) in coordinate system (r,θ) is obtained with satisfying equation (2) and the boundary 

condition (4): 

                            (1) (1) (1) (2)
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Where An and Bn are constants to be determined , δn(1)=1+(-1)n, δn(1)=1-(-1)n, and Hn
(1)(x)are the 

Hankel functions of the first kind order with argument x and order n. 
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This scattered field has also automatically satisfied the traction-free boundary condition (4). 
To transform the Hankel functions in coordinate system (r,θ) into those in coordinate system 

(r1,θ1), the following exterior region form of Graf’s addition theorem is used [3]: 
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Inserting equation (19) into equation (18) leads to  
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Inserting equation (20) into equation (5) leads to 
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Similarly, u(1) in coordinate system (r2,θ2) can be obtained by the interior form of the Graf’s 
addition theorem: 
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To obtain the scattered wave by the inclusion, we use the image method. The model is built as fig 3, 
the origin o3 is the virtual source of the origin o2, and corresponding coordinate systems are (x3,y3) and 
(r3,θ3). 

 
Fig. 3 diagram of scattered wave of virtual source 

 
In the approach, u(2) is expressed as   
 )()()2( ba uuu +=  (24) 
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Where u(a) represents the scattered displacement by source o2, u(b) represents the scattered 
displacement by source o3.  

The general solution of equation (2) is  
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Where Cn, Dn are the constants to be determined.  
Similarly, u(b) satisfying the wave function (2) can also be obtained as  
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u(2) satisfies the traction-free boundary condition automatically(Yuan 1999). 
From the interior Graf’s addition theorem, u(2) in coordinate system (r1,θ1) can be obtained by 

transforming coordinate system (r2,θ2) and (r3,θ3) into (r1,θ1), respectively.  
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Inserting equation (28) into (5) leads to  
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Region ІІ. The general solution of Eq. (2) in region ΙΙ  can be expressed as  
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Region ІІІ. The general solution of equation (2) in region ІІІ can expressed as   
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Solving equations 
From boundary conditions, the boundary L meets the stress-free condition, and the boundary 

L meets the continuity condition. To solve the mixed boundary value problem, we define the 
functions φ(θ1) and ψ(θ1) as follows :  
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From the boundary condition of region ІІ, we can obtain the condition as follows:  
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Make their Fourier series expansions over [-π,π], and let the coefficients of the series equal zero. 
Rearrange the equation yields 

 1 1 1 1 1 1 1 1
0 0

( ) [ ( ) ( )] ( )n n m m m m mn m m mn
n m

R a E A T a C R a R a Uβ β β λ β λ
∞ ∞

= =

′ ′′− + =∑ ∑  (37) 

 (1)
1 1 1 1 1 1 1 1

0 0 0
( ) [ ( ) ( ) ] ( )k k kn m m m m mn m m mn

k m m
J a E H a A J a C J a Uβ λ β β λ β λ

∞ ∞ ∞

= = =

′ ′′− + =∑ ∑ ∑  (38) 

                                   0,1,2,3...n =   

 1 1 1 1 1 1 1 1
0 0
[ ( ) ( )] ( ) ( )m m m m mn n n m m mn

m m
B T a D R a R F R a Vβ β µ β α β µ

∞ ∞

= =

′ ′′− + =∑ ∑  (39) 

 (1)
1 1 1 1 1 1 1 1

0 0 0
[ ( ) ( ) ] ( ) ( )m m m m mn k k kn m m mn

m k m
H a B J a D J a F J a Vβ β µ β µ β µ

∞ ∞ ∞

= = =

′ ′′− + =∑ ∑ ∑  (40) 

                                    1, 2,3...n =  
Where  














≠
−
−

−
+

+−

≠=−+
−

==
−

=

mn
nm

φnm
nm

φnm
π
ε

mnφπ
n

φn
π

mn
π
φπ

λ

n

mn

),)sin()sin((
2

0),
2

2sin(1

0,

 

Advances in Engineering Research, volume 112

462



 














≠
−
−

−
+
+

≠=−+

==

=

mn
nm

φnm
nm

φnm
π
ε

mnφπ
n
φn

π

mn

μ

n

mn

),)sin()sin((
2

0),
2
2sin(1

0,0

 

From the continuity condition on the boundary C, inserting equations （16）（22）（29）（33）  
and （17）（23）（30）（34） into equation (8) and (9) respectively , the equations to determine the 
unknown constants can be obtained as follows:    
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The constants An , Bn , Cn , Dn can be obtained with truncation order n, and En , Fn , Gn , Hn can be 
obtained by inserting An , Bn , Cn , Dn  into equations（37）（39）（41）（43）. The errors between 
the numerical results and the theoretical results can be checked with the stress-free condition on 
boundary L and the continuity condition on L and C. 

When φ=0, we will obtain the solution without the hill. In the situation, Δʹmn=0, Λʹmn=0, and the 
right values of equation (45) and equation (47) are equal to zero, which lead to An=0, Bn=0. Finally the 
solution simplify to the known solutions [4] as following: 
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When γ=1 and β1=β2, we will obtain the solution without the underground inclusion. Δʺmn=0, 

Δʹʺmn=0, Λʺmn=0, Λʹʺmn=0, and the right values of equation (46) and equation (48) are equal to zero , 
which lead to Cn=0, Dn=0. Finally, the solution simplify to the known solutions [5] as following:  
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Numerical results 
Define a dimensionless parameter ud, representing displacement amplitude of stress-free surface.  

ud=|u|/u0, (r,θ)∈Γ,L 
Define dimensionless parameter η, representing frequency of incident wave. 

π
bβ

λ
bη 12

==  

where λ represents incident wavelength. We study the effect of an underground circular inclusion 
under a circular-arc hill on ground motion with the dimensionless parameter ud. 
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The effect of a hill and an inclusion on surface displacement. 
 
 

     
                                （a1）h/b=0                                                                                （a2）h/b=0.5 

      
                               （b1）h/b=0                                                                                 （b2）h/b=0.5 
Fig. 4 The surface displacement amplitudes ud versus the dimensionless frequency η and the 
dimensionless distance y/b under vertical incidence for the following cases: (a1) and (b1) are the 
model with only an underground cavity and inclusion respectively, and (a2) and (b2) are the model 
with a hill (h/b=0.5) above a cavity and an inclusion respectively. The buried depth and radius of the 
subsurface structures above d3=6b, a2=b. 

In this section, the surface displacement amplitudes of a hill above an underground structure under 
vertical incident SH wave are obtained. Furthermore, to discuss the respective effect of the hill and the 
underground structures, three degraded models are discussed as well: one with only the cavity, one 
with only the inclusion, and last one with only the hill.  

Fig4a1 shows that there are periodic peaks and troughs due to large and small displacement 
amplitudes on the surface exhibited. To interpreter the distribution law, we analyze ud at the point y=0 
firstly. We know that if the phase difference of the incident wave reaching surface directly and its 
reflections from the boundary of the cavity is 2nπ and (2n-1)π (n represents a positive integer), their 
superposition on the ground would be maximum and minimum respectively. The observation that 
these phase difference corresponding to a maximum or minimum displacement is a group of 
arithmetic progression suggests that they relate to the periodicity of the peaks and troughs. To support 
the conjecture, from phase difference ωΔt=2nπ and (2n-1)π we obtain the equation: 

 )/( 232 adnaη −=  (49) 
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 )(2/)12( 232 adanη −−=  (50) 
where equation (49) is same with that concluded in the previous work [4]. Substituting the known 
parameters into the equation (49) and (50), the frequencies estimated (peaks: 0.2, 0.4, 0.6, 0.8, 1.0 and 
troughs: 0.3, 0.5, 0.7, 0.9) are in good agreement with that shown in fig 4a1. Next, the propagation 
path length of the reflections reaching ground surface -3≤y/b≤3 between the boundary of the cavity 
and ground surface is unequal, symmetrical by the line y=0. This leads to the bent ripples in fig 4a1.  

Compared with the cavity, fig 4b1 shows the ground displacement with a inclusion filled with 
softer medium with respect to the surrounding medium (γ=μ2/μ1=1/4，c2/c1=1/2). The displacement 
amplitudes in the surface direction y change. There are also several peaks in the figure. Unlike the 
peaks in the fig 4a1, the distances between them is not equal. However, specially, the distribution of 
the peaks at low frequencies of λ≥5a2 can be estimated with reasonable accuracy by equation (49). 

Fig 5 shows that the maximum displacement amplitude appear on the hilltop at the frequencies we 
discussed, and the vibration near the hill rims 
(y/b=±1) is weakened with the frequencies 
increasing. 

With combining the characters of the effect 
of the underground structure and the hill we 
analyze their combined effect on ground 
motion. Fig4a2 and fig4b2 show that the 
surface displacement would be large (small) in 
the region where it is amplified (weakened) 
both in its two degraded models (as the point 
η=0.4, y=0 shown in fig 4a2, corresponding to 
that shown in fig 4a1 and fig 5). So we can 
easily estimate the dangerous frequencies at 
the hilltop under vertical incidence with 
equation (49). Here we conclude that the effect 
can be seen as the superposition of the effect of 
the inclusion and the hill each other 
qualitatively. Yet the superposition effect is 

not equal to the sum or the product of that of each other. 
 

The effect of the medium of inclusion and the shape of hill on surface displacement.  
 

 
                   (a1) α=0˚,h/b=0                                                                          (a2) α=0˚,h/b=0.25   

 
Fig. 5 Surface displacement amplitudes with  

a hill (h/b=0.5) 
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                                    (a3) α=0˚,h/b=0.5                                                                        (b1) α=90˚,h/b=0  

  
                                      (b2) α=90˚,h/b=0.25                                                                 (b3) α=90˚,h/b=0.5   

Fig. 6 Several surface displacement amplitude obtained for the computed parameters as 
following: η=1, h/b=0, 0.25, 0.5, d3=6b, a2=b, and the density and the wave velocity of the inclusion 
ρ1/ρ2=1, c1/c2=1,2,4,∞, where h/b=0 represents the results without the hill, and c1/c2=1 presents the 
model without a inclusion, c1/c2=2,4 presents a soft and softer inclusions respectively, and c1/c2=∞ 
presents a cavity. Fig 6a1~a3 is for horizontal incidence, and fig 6b1~b3 is for vertical incidence. 

Fig 6a1 is in the circumstances without the hill. It can be noted that the displacement with the soft 
inclusion and the tunnel is large around two points y/b= -1.4, 0.5; when the inclusion is soft enough 
(like c1/c2=4), its effect is equivalent in function to a cavity on y/b∈(-3,0); Simply, the tough 
inclusion cause a weak surface displacement. Fig 6a2 and fig 6a3 indicate that, special for the soft 
inclusion and the tunnel, the surface regions vibrated greatly with a hill is the same with that without 
a hill nearly; the tough inclusion only causes a large displacement amplitude at surface y/b=0.5 when 
h/b=0.5. 

Next we analyze the situation of vertical incidence. Fig6b1~b3 show that the softer the inclusion, 
the larger surface displacement amplitude is. For example, in fig 6b3, ud 1.6 at c1/c2=2 while 2.1 and 
2.6 at c1/c2=4 and ∞, increasing 31.1% and 62.5% respectively. At hill rims (y/b=±1), the greater 
height-to-width, the weaker the ud is. As hill rims in fig 6b3, the surface displacement amplitude is 
unchanged nearly with changing the softness and hardness of the inclusion. The hard inclusion 
weakens the ground vibration above it, less than 0.5, decreasing 75% than free surface of a half-space. 

Conclusion 
The analytical solution of scattering of SH wave by an underground inclusion under an arc-circular 
hill has been obtained in this paper. It can be concluded that: 
    1) The effect of a hill and an inclusion on surface displacement amplitude can be seen as the 
superposition effect of each other qualitatively. Generally speaking, the displacement would be large 
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in the common amplified region of the two degenerated models: the one without the hill, the other one 
without the inclusion. 

2) The computation results show that flat ground surface above a tunnel vibrate greatly and weakly 
under vertical incidence at periodic frequencies, and the amplified dimensionless frequencies are 
obtained η=nb/(d3-a2). Specially, it is also applied in the circumstance of a soft inclusion at low 
frequency band (η≤2b/5a2). Dangerous region can be forecasted by combining with concentration of 
dangerous region on the hill. 

3) The ground motion is remarkably affected by softness and hardness of inclusion. Under 
horizontal incidence, the soft inclusion (like c1/c2≥2) makes it violent on the same position with the 
circumstance of the tunnel. It behaves as a simple kinetic characteristic under vertical incidence. 
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