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Abstract. A nonlinear analytical wire strand model under axial tensile load has been developed in
this paper. The model extends Costello’s elastic strand model by taking into account of the effect of
contact deformation between contacting wires. Hertz contact theory is adopted to establish the
relationship between contact deformation and normal contact force. The tensile behaviour of a
multi-layered 91-wire strand has been analysed using the model developed. The analysis results
showed good agreement with the experimental data.

Introduction
Wire strands are groups of wires laid helically in successive layers over a straight center wire in a
regular geometric pattern to form an integral unit to provide axial strength and stiffness. The use of
these helically wound wires constitutes a wide class of vital engineering components and has played
an important role in various engineering applications such as suspension bridges, sport stadium and
cable-membrane structure etc.

When wire strand is loaded axially, transverse contraction will occur in the radial direction of the
strand structure. The radial contraction plays an important role in determining the strand mechanical
behaviour and it is mainly affected by the Poisson’s ratio effect and the contact deformation between
the contacting wires [1]. Owing to the complex geometry of the strand and the highly nonlinear nature
of the inter-wire contacts, most analytical models to date do not take this into full consideration.
Costello et al. [2] considered the Poisson’s ratio effect, but neglected the contact deformation. Utting
and Jones [3] evaluated the contact deformation on the basis of Hamlet’s experiment. LeClair [4]
studied the effect of contact deformation, which derived from Hertz contact theory, on the tension
behaviour of a multilayered wire strand. But numerical inconsistencies were identified in his results
[1]. Argatov [5], Gnanavel and Parthasarathy [6] had also studied the effect of contact deformation,
but their works were all limited to the study of simple 7-wire strands. In this paper, a nonlinear
analytical model for wire strands has been developed. It extends the Costello’s elastic model by fully
considering the effect of contact deformation between contacting wires in the strand.

Analytical Model

A typical geometry of wire strands analysed in this paper is shown in Fig. 1. In general, it comprises a
straight core wire surrounded by several successive layers of round helical wires. The radii of helical
wires in the same layer are the same. The helical directions for adjacent layers of wires are opposite.
The contact between the core wire (defined as the first layer) and second-layer wires is line contact
[7]. The geometric arrangement forms regular pattern layout of trellis point contacts between the rest
adjacent layers of wires, which is called point contact thereafter. For an arbitrary wire in the layer i
(i=1, 2, ∙∙∙, n), the radius is Ri, the helical angle is αi, where n is the total number of wire layers in the
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strand. The strand is loaded axially with an axial force, F, and an axial twist moment, M, which
represents the most basic loading case for engineering applications.

Fig. 1 Geometry of the wire strand Fig. 2 Contact geometry for point contacts

It is assumed that the helical wires will deform into new helix under axial load. For an arbitrary
helical wire in the ith layer, the strand axial strain, ε, and twist rate, τs, are [2]
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where ε1 is the axial strain of the center wire, εi is the axial strain of the helical wire, αi is the helical
angle, =i i i   is the helical angle in the loaded state, ri is the helix radius, ir is the helix radius in
the loaded state. Subscript i (i=2, 3, ∙∙∙, n) represents quantities pertaining to the ith layer.

The helix radius in the unloaded state, ri, is
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Considering Poisson’s ratio, μ, and contact deformation, δ, the helix radius, ri, becomes
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where δ is caused by inter-wire contact and it can be calculated as
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and δ1 is the approaching distance between the core wire and its adjacent second-layer wires due to
the line contact. And δi is the approaching distance between the ith layer helical wires and their
adjacent (i+1)th layer wires at the location of the trellis crossing contact points.

According to Hertz contact theory [8], δ1 can be expressed as
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where P1 is the contact force per unit length of the contact line, E is the elastic modulus,

 2
1 1 2 1 28 (1 ) ( )c P E          is the half width of contact region, 1 and 2 are curvature

radii for the core wire and the second-layer wires at contact position.
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and  2 2 1=arctan 2p R 


is the helix angle of the contact line on a wire in the second-layer.
Similarly, based on Hertz contact theory [8], δi can be expressed as
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where Pi is the normal contact force acting on the contact point between wires in the layer i and i+1,
'( )K k and '( )E k are the first and second kind of complete elliptic integrals, ' 2 1 2(1 )k k  , k b a ,

where a and b are the semi-major and semi-minor of the elliptic contact region, φi is the crossing
angle of the contacting wires, i , '

i , 1i  and '
1i  are the curvature radii of the contacting wires at

the contact point.
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and  arctan 2 ( )i i i ip r R   ,  1 1 1 1arctan 2 ( )i i i ip r R     


, ip and 1ip  are the pitch lengths.
According to strand geometry, the contact force exerted by the nth layer on the (n-1)th layer at the

contact point is
, 1n n n n nf C X s   (12)

where Cn is the coefficient considering the actual contact position, Xn is the contact force per unit
length of the centerline of the nth-layer wire, Δsn is the spacing between two contact points as shown
in Fig. 2.

Based on Newton’s third law, the contact force acting between arbitrary two contacting wire layers
i and i+1 meets

, 1 1,i i i if f   (13)
where , 1i i i i if C X s   , 1, 1 1 1i i i i if C X s     .

Using the Eqs. (12) and (13), the contact force exerted by the (i+1)th layer on the ith layer at the
contact point is the sum of the contact force from the (i+1)th layer to the nth layer and it can be written
as
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where in above equations, 1 1 1cosi i i i is p m    


, 1 cosi i i i is p m    (Fig. 2), mi is the total

number of wires in the ith layer,   22 2 2
1 1 1 1 1 1(2 ) 2 ( )i i i i i iC p r p r R            , Xi is the contact

force per unit length of the wire centerline.
Based on Costello’s elasticity theory [2], when wire strand deforms under axail load, Xi is
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is the twisting moment,
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where ' 2cosi i ir  , ' 2cosi i ir  , sin cosi i i ir   and sin cosi i i ir   are the binormal
curvatures and twists per unit length of the deformed wire centerline, respectively.

For line contact, the contact force per unit length of the contact line, f2,1, can be calculated as
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For each layer wires, nonlinear Eqs. (1), (2) and (17) can be achieved. They are fuctions of the
unknown parameters of εi, Δαi and b or c. Intergrating all the equations for each layer wire, the
nonlinear analytical model for wire strand is established. The number of equations is 3(n-1) which is
equal to the number of the unknown parameters, thus the equation can be solved. Quasi-Newton
method has been used to solve the nonlinear equations in this paper.

After the nonlinear equations are solved, the strand axial load, F, and torque,M, can be calculated
using
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where if right lay, sgn(i)=+1; if left lay, sgn(i)=-1.

Numerical Analysis
The tensile behaviour of a six layered 91-wire strand was analysed using the model developed in this
paper. Table 1 details the geometry data of the strand construction. The radius of the core wire is
greater than the radii of the helical wires, which ensure that the contact occurs only between adjacent
layers. The Young’s modulus is 210 GPa and Poisson’s ratio is 0.3. A strand axial strain ε of 0.008
was applied in increments of 0.001 in the analysis. Non-rotation end constraint conditions are
imposed.

To validate the analytical model developed, tensile test on the 91-wire strands was conducted. The
experiment arrangement is shown in Fig. 3. A 5000 kN hydraulic testing machine designed for wire
rope tests was used. The length of the sample was 2800 mm and its ends were fixed in the conical
mould using casting method and then clamped on the tension machine as shown in Fig. 3(b).
Extensometer was used to measure the strand extension and mounted on the sample with an original
length of 1962 mm as shown in Figs. 3(c) and 3(d). Vernier caliper with wide mouth plier was used to
measure the strand diameter.

Table 1 The geometry data of the six layered 91-wire strand

Layer
number i

Number of
wires mi

Wire diameter
2Ri (mm)

Pitch length
pi (mm)

Helical angle
αi (°)

Lay
direction

1 1 5.00 — 90 —
2 6 4.55 106 74.2 RH
3 12 4.55 207 74.2 LH
4 18 4.55 307 74.2 RH
5 24 4.55 408 74.2 LH
6 30 4.55 509 74.2 RH
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Fig. 3 Tensile experiment arrangement Fig. 4 Variation of load with strand axial strain
Fig. 4 shows the strand axial load as a function of the applied axial strain. The results have been

compared with those obtained from experiment and Costello’s elastic model. From this figure it can
be seen that the present analytical model shows better agreement with the experiment, whereas
Costello’s model gives too high load predictions for given axial strains.

Fig. 5 shows the variation of axial stress in a single wire of each layer with strand axial strain. It
can be seen that the stress level in the core wire is higher than those of the helical wires. And the stress
levels for the helical wires are quite uniform during the loading process. This means that the design of
this wire strand construction is rational.

Fig. 6 shows the variation of contact approaching distance between adjacent layers of contacting
wires for different strand axial strain levels. From this figure it can be seen that the maximum contact
deformation occurs between the second-layer wires and the third-layer wires, which is the innermost
trellis crossing contact location. It can be also seen that, with increasing strand axial strain, the
stiffness of the crossing trellis contact increases. This agrees with the rules of Hertz contact theory.

Fig. 5 Axial stress in a single wire of each layer Fig. 6 Contact approaching distance

With the increase of the strand axial load, the diameter of the strand decreases. To further validate
the model developed in this paper, variation of the strand diameter with applied strand axial load was
experimentally measured. Table 2 shows the strand diameter changes from both the numerical
models and experiments. F0=2129kN is the strand minimum breaking load of the six layered 91-wire
strand. The diameter of the tested strand is slightly larger than its nominal diameter due to the
geometry imperfection from manufacturing process. As the amount of diameter contraction due to
extension load is quite small, it would be clearer to directly show the relative changes of diameters
between loading intervals. Fig. 7 compares the relative diameter changes between different loading
levels from different models and experiments. From this comparison it can be seen that the new
model compares well with the experimental values. This indicates that the contact deformation
should be considered when developing accurate mechanical models for multi-layered strands.
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Table 2 Variation of strand diameters (mm)
Loading level

(extension strain) F (ε)
Strand nominal

diameter
Costello’s
model

Analytical model
(this study) Experiment

0.2F0 (0.00184) 50.5 50.475 50.326 49.850
0.3F0 (0.00276) 50.5 50.462 50.265 49.775
0.4F0 (0.00368) 50.5 50.449 50.210 49.750
0.5F0 (0.00460) 50.5 50.436 50.166 49.725

Fig.7 Comparison of relative diameter changes between different loading levels

Conclusion

A nonlinear analytical strand model which fully takes into account the contact deformation between
the contacting wires has been developed in this paper. A multi-layered wire strand construction has
been analysed using the model developed. For the global tensile rigidity, the nonlinear model
prediction shows excellent agreement with the experimental results. The neglecting of contact
deformation between contacting wires in Costello’s elastic model leads to about 10% higher
prediction of the axial extension rigidity for this multi-layered wire strand construction.
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