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Abstract. It is of critical importance for convergence and diversity of final solutions that finding out 
a feasible global best guide for each particle of the current swarm in multi-objective particle swarm 
optimization (MOPSO). An improved approach for determining the best local guide in MOPSO is 
proposed, where the Pareto archive with size limit is used to store the non-dominated solutions. While 
selecting the local best particle, a random number is used to judge whether the crowding distance is 
taken into account or not. A new solution is referred to overcome the problem that it is much harder to 
generate a new particle dominating the original one in MOPs than in single-objective optimal 
problems. In addition, to improve the efficiency of search and avoid precocity, the inertial weight 
changes in the iteration process. The proposed approach is applied to some typical testing functions, 
and the experimental results of Pareto fronts for these functions are satisfied. 

Introduction 
One of the major problems existing today in the area of science research and industrial practice is 

multi-objective optimization problem (MOP)[1, 2]. The most important characteristic of MOP, which 
is different with single objective problem, is the final solutions. A problem with conflicting objective 
functions gives rise to a set of optimal solutions, instead of one optimal solution. Among these 
solutions, none is better than any other with respect to all of the conflicting objectives. The concept of 
Pareto optimal is usually used in the solving of MOPs, whose final goal can be boiled down to a 
Pareto non-dominated set meeting all constraints of the problem. 

Due to the reasons mentioned above, multi-objective evolutionary algorithms(MOEAs) have been 
widely used, such as Non-dominated Sorting Genetic Algorithm (NSGA-II)[3, 4], Artificial Bee 
Colony Algorithm(ABC)[5], Particle Swarm Optimization(PSO)[6] and so on. During the past 
decades, it has been confirmed that PSO is effective while solving optimal problem including only 
one objective. The particularities of MOPs make PSO not applicable directly before necessary 
modification. Therefore, more and more extended PSO has been proposed. In [7], fuzzy mechanism 
was used to select the particle possessing global best position in the proposed optimal algorithm. New 
data structures called dominated and non-dominated trees were introduced to facilitate the use of an 
unconstrained elite archive[8]. 

Mathematical Model of MOP 
Without loss of generality, it is assumed all of the objectives are to be minimized, so a MOP can be 

of the form: 

1 2min ( ) ( ( ), ( ),..., ( ))mf x f x f x f x=                                                                                                       (1) 

Obviously, there are m conflicting objective functions need to be minimized simultaneously, and 
each of them depends on the decision vector 1 2( , , , )nx x x x= L . Each ( 1,2, , )ix i n= L  represent a 
dimension of the vector and the value must be feasible with some limits of itself or among each other. 
As mentioned before, for MOPs, where the objectives are typically conflictive, performance 
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improving of one objective may sacrifice the performance of at least one another, so the concept of 
Pareto dominating will be given.  

Decision vector x is said to strictly dominate another y iff 

( ) ( ) 1, 2, .i if x f y i m≤ ∀ = L                                                                                                                      (2) 

( ) ( ) .i if x f y for some i<                                                                                                                         (3) 

If there is no such decision vector x* exist which dominate x, x is called Pareto optimal solution. 
The set of all Pareto optimal solutions is said to be a non-dominated set.  

The Improved MOPSO 
In this paper, some concepts are defined as followings. 
Assume that nds  represent Pareto solution space, the size limit of which is S  . Firstly, initialize 

the population including N  particles randomly, taking consideration of the variables’ feasible 
region. Choose the first particle and input it into nds , and examine the second one according to 
Algorithm 1. The rest particles can be done in the same manner until the last one. As ( 1,2, , )ix i m= L  
is n-dimensional vector, nds  can be expressed as formulation (4): 
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During the iterative process, distance matrix for nds  is identified by dm，which is a diagonal 
matrix. 
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where the definition of ( , )i jd x x can be described as follows: 
If i is equal to j , obviously, the distance between them is zero, that is, ( , ) 0i jd x x = ; Otherwise, 

( , )i jd x x  would be the geometric distance in the n-dimensional space, i.e. 2

1

( , ) ( )
n

i j it jt
t

d x x x x
=

= −∑ . As in the 

MOPs, great attention will be paid to the distribution of functional value rather than independent 
variable, thus it would be more suitable regarding distance between functional values as the value of 
distance matrix. 

The dense distance, _d dis , is a m-dimensional column vector, which can be expressed as follows: 

min min min
1 2_ ( , ,..., ).md dis d d d=                                                                                                                   (6) 

where each min
id  represents the minimal distance between ix and all other Pareto solutions, i.e. , 

the minimal value of every row in dm .  
The sparse distance, _s dis，a m-dimensional column vector, can be expressed as follows: 
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min min min
1 2_ ( ', ',..., ').ms dis d d d=                                                                                                          (7) 

where each min 'id  represents the average value of two minimal distances between ix and all other 
Pareto solutions, i.e., the average of two minimal value of every row in dm .  

Algorithm1: Judge whether or not a feasible solution is Pareto-optimal, if it is, input it into nds . 
Here Algorithm 2 would be invoked. For each Pareto solution in nds , invoke Algorithm 2, and 
determine whether or not deleting the current Pareto solution according to the value of domiRel. If the 
size limit of Pareto solution space is exceeded, delete one of the solutions whose dense distance is 
minimal.  

Algorithm 2: Calculate the functional value of two particles, and judge the dominance 
relationship between them. 

Algorithm 3: Finding out the local best guide for the current particle. Generate a random number 
between zero and 3. If it is zero, regard any one of the vectors whose sparse distances are biggest as 
the local best particle. If the random number falls between one and three, choose the local best 
randomly.  

Here the key algorithms are described. 
(1) Initialize the population according to the given size, where the position and speed of each 

particle can be set randomly, of course, the value limits must be satisfied. The non-dominated 
solutions nds and distance matrix dm  are both initialized as null. The current iteration count t  is set 
to 0. 

(2) Each particle of the population will be taken into account, and update nds   and dm  according 
to the function outlined in Algorithm 1.  

(3) The best memory of each particle, pbest , which serves as a guide for particle to travel through 
the search space, is initialized as the particle itself. 

(4) 1t t= + . 
(5) Updateω  if necessary. 
(6) As explained in Algorithm 3, the function is used to determine the local best particle for the 

current iteration, which is represented as gbest . In this algorithm, the concept of distance matrix for 
Pareto solutions is of great significance.  

(7) Calculate positions and velocities of particles in new generation, where the limit values, for 
example, the assigned value of the position interval for each component of particles must be noted. 

(8) According to the objective functions, calculate the objective vectors for all particles, and store 
the results into a particular three-dimensional matrix, named goals, whose values are composed of the 
objective function value of a certain particle in a given iteration generation. 

(9) Adjust the best memory of each particle, pbest , through judging the dominance relationship 
between the new particle and the original pbest  using Algorithm 2. 

(10) Examine the dominance relationship between each particle in new generation and nds , and 
update the values of nds  and dm . 

(11) If the terminate criterion is satisfied, the iterative process ends; Otherwise, jump to (4). 

Simulation results and analysis 
Here several typical test problems with two objectives are chosen to test the proposed algorithms, 

including Schaffer’s study(SCH) and parts of developed test problems for multi-objective 
optimization by Zitzler. In the case of setting the same parameters and testing many times, the Pareto 
front curves for all tested problems are given in Fig.1.  

In the implementation of this study, the key parameters are set as follows. The inertia 
weightω gradually drops to 0.4 from the initial value 1.0, which is to control the impact of history 
velocity on the current velocity. r1f  and r1f are both random values in the range [0,1], and the 
population size is set to 50 and 100, while the program is to run 200 generations. The Pareto archive is 
limited to 100. Simulation results are acquired with two different population sizes.  
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(a) SCH with    
50 particles 

(b) SCH with 100 
particles 

(c) ZDT1 with 50 
particles 

(d) ZDT1 with 
100 particles 

Fig.1 Pareto front for all test problems with different population sizes 

Conclusions 
In this study, a new improved MOPSO is proposed to implement the typical MOPs. In this 

algorithm, the main work is to find the best local guides for each particle in order to obtain satisfied 
Pareto fronts with high diversity. From the simulation results, it can be seen that the Pareto fronts of 
the improved approach are satisfied. In future work, it will be applied to more complicated MOPs 
with more constraints or objectives.  
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