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Abstract. A novel algorithm for robust adaptive beamforming is put forward in this paper. This 
algorithm use the characteristic of complement of desired signal subspace complement to build 
constrained model and solve the supremum, then the solution based on convex programming are 
given in the paper .The two characteristics of the proposed algorithm are: on one hand, this algorithm 
does not need imprecise steering vector of desired signal and exact antenna array geometry; on the 
other hand, the presented algorithm has robustness for steering vector mismatches, antenna element 
displacement errors and other errors, and has better performance than existing algorithms. The 
simulation results show the effectiveness of the proposed algorithm. Due to the little prior 
information is needed; therefore, it is helpful to engineering application. 

Introduction 
Robust adaptive beamforming(RAB) arouse much and deep study among scientists in recent years 

due to main two reasons. First, adaptive beamforming is widely used in radar, sonar, wireless 
communication, microphone arrays, medical imaging and other fields[1-2]; Second, there is an urgent 
demand of the robustness of the algorithm in the process of practical application. Early robust 
adaptive beamforming methods such as diagonal loading method (DL)[3] and eigen-subspace method 
(ESB)[4] have their own drawbacks, the former drawback is that the loading factor is difficult to 
select, while the latter results in poor performance in the case of low signal to noise ratio. After 2000, 
a kind of algorithm with very clear theoretical meaning, namely robust beamforming algorithm based 
on Uncertainty Set constrains, has been proposed. The main idea of the algorithm is to constrain the 
steering vector of the desired signal to various uncertain sets, including spherical uncertainty set 
[5,6], ellipsoidal uncertainty set [7], and diamond uncertainty set[8]. The aim is to ensure that the 
beamformer can still maintain the ideal performance when the steering vector error varies within a 
certain range. Besides, the robust  algorithm against big pointing error is studied in [9,10]. In [11], the 
situation when the vector mismatch occurs and the training sample is contaminated by the target 
signal meanwhile is discussed, all of above are the improvement and supplement to the uncertain set 
algorithms. 

In another sense, most of the algorithms of the uncertainty set are robust adaptive beamforming 
methods (RAB) based on the minimum variance distortionless response (MVDR) criterion. The 
typical algorithms can be summarized as: (i) worst case performance optimization (Worst Case) [5]; 
(ii) doubly constrained robust beamformer[7]; (iii) probabilistic constrained robust beamformer [12]; 
(iv) a robust beamformer (EOD) based on steering vector mismatch orthogonal decomposition [13]. 

The above four robust adaptive beamforming methods can solve the performance degradation  
problem which result from the steering vector mismatch well, but it is still necessary to know the 
exact azimuth direction of the assumed steering vector in advance, and other factors are based on the 
hypothetical perfect array model . Once the exact orientation of the steering vector can not be known, 
or there are other array model errors such as array geometry deviation, local scattering and other 
common errors, whether the above algorithms are still robust is an unknown problem. 
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In this paper, a new robust adaptive beamforming algorithm based on desired signal subspace 
complement is proposed. The algorithm only needs little prior information such as less accurate array 
shape and approximate arrival azimuth interval. It is not necessary to know the exact incoming wave  
steering vector like above algorithms. Simulation experiments show that the proposed algorithm 
requires very little prior information and is not only robust to steering vector mismatch but also robust 
to array errors such as array pitch errors, and is more robust than existing current several robust 
adaptive beamforming algorithms. 

Array Signal Model 
Let us consider an uniformly linear array composed of M elements and receive narrow-band 

signals, the received signal at time t is:  

s ix(t)=x (t)+x (t)+n(t) .                                                                                                                                   (1)                  

Where sx (t) , ix (t) and n(t) are  statistically independent of the desired signal, interference and 
noise Respectively. Here, sx (t)=s(t)a , s(t)  represents the desired signal waveform and a is the actual 
steering vector of the desired signal. 

So the output of the adaptive beamformer is: 

Hy(t) x(t)= w .                                                                                                                                (2) 

Where 1,[ ... ]T M
Mw w C= ∈w is the beamformer weight complex vector, T( )⋅ and H( )⋅  represents the 

transpose and conjugate transpose of the matrix, respectively. 
 The MVDR criterion was first proposed by J. CAPON, so also called CAPON beamformer, it is 

described as:    
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where i n+R is the interference plus noise covariance matrix which can not be obtained in the actual 

processing , so i n+R is usually  replaced by the estimated value which is the average of the sampling of 
HX(i)X (i)  , here N is the number of snapshot, the estimated value of xR is defined as: 
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The beamformer output signal to noise ratio is:     
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Where 2

sσ  is the desired signal power. 

Proposed Algorithm 
 Algorithm Description. It is easy to know from the definition of the steering vector,for the vector 

â to be estimated,there is  2ˆ||a|| =M ,  M is the number of the array elements. In order to avoid the 
convergence of the estimates flowing into the range of interfering signals or the linear combination of 
interference, we also need to give additional constraints. Suppose the specific direction of the 
assumed steering vector ( )a θ  can not be obtained, can only  be roughly known in sector region 

min max[ , ]θ θΘ =  which Θ can be obtained by low resolution direction finding methods. Assuming that 
the signal contained in the sector region Θ  and the interfering signal can be distinguished 
significantly and Θ do not contain any interfering signals, we can assume that the sector Θ is a 
neighborhood centered on the assumed desired signal direction. So we construct the matrix  
 
     H( ) ( )C g g dθ θ θ

Θ
= ∫ .                                                                                                                       (7) 

 
( ) ( )HC d d dθ θ θ

Θ∫ %
% %@ .                                                                                                                    (8) 

 
Where Θ%  is the complement of the sector region Θ , which contains the range of interfering 

signals other than the possibly desired signal. And we can get eigenvectors and eigenvalues of  C%  by 
eigen decomposition method , U and Λ denote the the diagonal matrix  containing eigenvectors and 
eigenvalues respectively. The eigenvalues in Λ  can be arranged in the descending order 
as: 1, 1,...,i i i Mλ λ +≥ = , and further can be written as H H

1 1 1 2 2 2C=U Λ U U Λ U+% , 1Λ here is a 
K K× diagonal matrix containing K major eigenvalues of matrix C% , 1U is  a  set  containing its 
corresponding eigen vector. while 2Λ  is a ( ) ( )M K M K− × −  diagonal matrix containing M K−（ ） 
non-major eigenvalues and 2U  is its corresponding eigenvector. 

Since the matrix C% is computed from the complementary region of the desired signal, it can be 
concluded that the steering vector of the desired signal in the sector Θ  and its complement Θ%  can be 
approximated as a linear combination of 1U and 2U  for the properly chosen K ,that is, 

 
2 2( ) U ,d vθ θ≅ ∈Θ                                                                                                                   (9) 

 
 1 1( ) U ,d vθ θ≅ ∈Θ%                                                                                                                   (10) 
                                                                                                              
Where 1v  and 2v  are the coefficient vectors.From the above equation, it is easy to know 

2
1|| ||v M=  , 2

2|| ||v M= , so we can get the next equations easily: 
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Where 1Λ  is a diagonal matrix containing the K  major eigenvalues of the matrix C% ,  2Λ is the 

matrix containing the remaining minor eigenvalues. Then the quadratic constraint Hd ( )Cd( )θ θ%  
represents the majority of the value outside the desired sector, and the estimate â  of the desired 
steering vector  can be given some constraint to ensure that the estimate â  does not converge to the 
region where the interfering signals are  located. Next we look at the distribution curve of the value 

Hd ( )Cd( )θ θ%  using an example. 
Assuming a 10-element half-wavelength uniform linear array(ULA), Fig. 1 shows the values of the 

quadratic form Hd ( )Cd( )θ θ% for the different angles, we can see that the value of Hd ( )Cd( )θ θ% is the 
smallest when θ  locates in the interval [0 ,10 ]Θ = o o ;  the value will become larger outside of the 
range. Therefore, if 0∆  is selected to be equal to the maximum value of the term Hd ( )Cd( )θ θ%  within 
the presumed angular sector Θ ,the constraint (13)guarantees  that the estimate of the desired signal 
steering vector does not converge to any of the interference steering vectors and their linear 
combinations, but only fall within the interval Θ . 

Based on the above example, we give constraints on the estimated vector â , 
 

H
0ˆ ˆa Ca ≤ ∆%                                                                                                                                        (13) 

 
 Where 0∆ is a uniquely selected value for a given angular sector Θ , that is, 
 

                                                                                                                     (14) 
 
Using the definition of 0∆ (14) together with (12), we can find that, 
 

                                                                                                    (15) 
 
Taking into account the normalization constraint and the constraint (13), the problem of estimating 

the desired signal steering vector based on the knowledge of the sector Θ  can be formulated as the 
following optimization problem， 

 
H -1

â
2

H
0

ˆˆ ˆmin a R a

ˆsubject to  ||a|| =M
ˆ ˆa Ca ≤ ∆%

                                                                                                                   
(16a)
(16b)
(16c)

 

 
 Compared to other MVDR RAB methods,which require the knowledge of the presumed steering 

vector, array geometry, propagation media, and signal source characteristics. The proposed algorithm 
only requires less accurate array geometry and approximate knowledge of the angular sector Θ , so 
the proposed algorithm requires less prior information. 
      Steering Estimation via Convex Optimization.The first step is to make sure  the constraint (16) 
is feasible. It is easy to prove the constraint (16) is feasible if and only if 0 / M∆ is greater than or 
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equal to the smallest  eigenvalue of the matrix C% .Indeed, if the smallest   eigenvalue of the matrix C%  
is larger than 0 / M∆ ,then the constraint (16c) can not be satisfied  for for any â . 

 If the problem (16) is feasible，the equation  -1 -1ˆ ˆˆ ˆ ˆˆa R a=Tr(R aa )H H  and ˆ ˆ ˆˆa Ca=Tr(Caa )H H% % can be 
used to rewrite it as 

-1 H

ˆ             a
H

H
0

ˆ ˆˆmin (R aa )

ˆ ˆsubject to       (aa )=
ˆ ˆ                     (Caa )

Tr

Tr M
Tr ≤ ∆%

                                                                                                          
(17a)
(17b)
(17c)

 

 
Introducing the following positive semi-definite matrix variable HˆˆA aa , A 0@ f ,the problem (17) 

can be recast as 
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Where ( )rank ⋅ stands for the rank of a matrix，the only non-convex constraint in (18) is the 

rank-one constraint, the others are linear in A , using the semi-definite programming (SDP) 
relaxation technique [14]. The relaxed problem can be obtained by dropping the non-convex rank-one 
constraint (18d) and requiring that A 0f ,Thus the (18) can be transformed into the following convex 
problem. 
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The equalities (19) are convex which can be solved by MATLAB CVX toolbox efficiently. 

Simulation Results 
Let us consider a ULA of 10 omni-directional antenna elements with a half-wavelength spacing, 

the two interfering sources are assumed to impinge on the antenna from the directions 30o  and 50o , 
and the desired signal direction is assumed to be p 3θ = o . In all simulation examples, the 
interference-to-noise ratio(INR) equals 30dB and the desired signal is always present in the training 
data. The experimental results were obtained from 100 independent Monte Carlo experiments.  

The proposed beamformer is compared with the following four methods in terms of the output 
SINR:(i) the eigenspace-based beamformer(ESB) of [4], (ii) the worst-case performance 
optimization beamforming method; (iii) the mismatch error orthogonal decomposition method 
(EOD)[13], (iv) the diagonally loaded SMI beamformer(LSMI) [3].  Among them, the algorithm 
proposed in this paper and the EOD algorithm in [13] , the angular sector Θ  are assumed to be 

p p[θ 5 ,θ 5 ]Θ = − +o o , and the MATLAB CVX toolbox is used to solve the convex optimization of 
the algorithm.  The value 0.1δ = in the EOD algorithm is used and the value 0.3Mε = in the 
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Worst-Case based beamformer is used, the diagonal loading level is set to twice the noise power 
(recommended by Cox in [7]). 

 
Simulation Example 1: Desired Signal Steering Vector Mismatch Due to Wavefront 

Distortion.We consider the situation  that the waveform propagates in an inhomogeneous medium, 
the phase increment accumulation is caused by the steering vector mismatch. It is assumed that the 
phase increments are held constant in each Monte Carlo experiment and randomly generated from the 
Gaussian distributed random number generator with zero mean and standard 0.04 . Fig. 2 shows the 
relationship between  the output SINR and SNR, where the number of snapshots is 30. 
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It can be seen that the proposed algorithm has better performance than the Worst-Case method in 

the low signal-to-noise ratio range. However, when the signal-to-noise ratio is greater than the 
interference-to-noise ratio, the performance tends to be the same. In fact, this also ensures that the 
estimate of the desired signal does not converge to the interfering signal interval 

 
 Simulation Example 2: Effect of The Error in The Knowledge of The Antenna Array 

Geometry. In this example, we study how the elements spacing error affect the proposed 
beamformer performance. It is assumed that the elements are undisturbed on a straight line, but the 
pitch is not uniform half-wavelength but errors occur, the errors are randomly distributed between 
the interval[ 0.05 ,0.05 ]λ λ− , which will lead to the  the steering vector mismatch of the desired 
signal. Figs.3 and 4 depict the output SINR curves (SNR = 20dB, INR = 30dB) versus the number 
of training snapshots and versus the  different SNR (snapshots K = 30, INR = 30dB), respectively. It 
can be seen that the proposed algorithm has better performance even if there is an error in the 
knowledge  of antenna array geometry. 

Fig.2 Output SINR versus SNR for 
training data size of K=30 and INR=30dB 

Fig.1 Values of term H( ) d (θ)Cd(θ)f θ = %  
for different angles 
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Conclusions 
 The robustness of adaptive beamforming is discussed in this paper when there is little prior 

information. An adaptive beamforming algorithm based on the desired signal subspace complement 
is proposed in this paper. The algorithm is described in detail, and the solution based on convex 
optimization is given after the mathematical equivalence conversion, thus the rationality of the 
solution is guaranteed theoretically. The simulation experiments verifies the effectiveness of the 
algorithm, the presented algorithm is robust to many types of array errors, and has better performance 
compared to current algorithms. 
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