
 A more efficient secure event signature protocol for massively
multiplayer online games based on P2P

Dapeng Li1, a, Liang Hu1,b , and JianFeng Chu1,c
1College of Computer Science and Technology, Jilin University, Changchun, 130012, China

alidp14@mails.jlu.edu.cn, bhul@jlu.edu.cn, cchujf@jlu.edu.cn

Keywords: MMOGs, event signature, hash-chain, peer-to-peer, discrete logarithms.
Abstract. In recent years, Massively multiplayer online games (MMOGs) have been increasingly
popular. Considering the limits of the traditional architectures, MMOGs based on the peer-to-peer
networks have many advantages: scalability, computation cost, reliability and concurrency.
Researchers have made improvements on this protocol to enhance its security since Chan et al.
proposed an efficient and secure event signature (EASES) protocol, however, no one has solved this
problem in essence. In 2013, Yuan et al. presented a higher secure scheme, unfortunately, its
efficiency is lower than others due to bilinear pairing. In this paper, we propose a more efficient and
secure protocol, the security of which is just guaranteed by the Diffie-Hellman problem. Meanwhile,
it is concluded that the efficiency of ours also behaves better after the comparison with other
existing protocols.

Introduction
MMOGs allow a multitude of players to act together concurrently in a virtual game world over the
Internet[1]. Many games such as Word of Warcraft, EVE Online, and Final Fantasy XI have shown
that MMOGs are a thriving business industry[2]. Players can play against each other or play in
teams to complete some missions, which provides more entertainment than single-player games and
attracts many people of different age, gender, and background to join[3]. Currently the prevalent
game architecture are client-server architectures, in which main functionalities of the virtual
environment such as user identification and state management are achieved on the server[4].
However, this architecture has the two limitations: low scalability and high costs of bandwidth and
computation. When thousands of players are online simultaneously, MMOGs can produce huge
network traffic and processing loads[5], making the server under great pressure. To solve this issue,
the game company would over-provision a large number of servers[6,7] at an unpredictable expense.
A possible solution to the limitations is the use of peer-to-peer architectures[8]. In 2004, an
architecture using the peer-to-peer networking model to host MMOGs was proposed by Knutsson et
al[9]. The difference between them is that computation cost and network load in peer-to-peer
architectures are distributed among peers, achieving high scalability[10] and low cost. That is,
peer-to-peer architectures are capable of solving problems prevalent in traditional architectures.
 Although peer-to-peer architectures provide considerable support for scalability of MMOGs and
other advantages over traditional client-server games, they still have to face a few key challenges
[11,12]. Security is probably the most important one of these challenges, which is caused by the fact
that players' communications are out of control of the server. Furthermore, a malicious player may
take advantage of this point to attack others, so that it is vital for MMOGs to prevent cheating.
 Traditional cryptographic techniques preventing cheating are to sign each update message of
each round with players' public and private key pairs, which requires a large amount of computation
when players send and verify event update messages. For efficiency, Chan et al. [13] proposed an
efficient and secure event signature (EASES) protocol to sign a sequence of event update messages
by applying one-time signature and the hash-chain keys. In EASES protocol, only the first signature
is signed by the public-key cryptography and the following update messages are signed by
hash-chain keys with hash function, which immensely reduces the computation cost compared to
digital signatures. Chan et al. proposed another protocol called dynamic EASES based on the basic

International Forum on Mechanical, Control and Automation (IFMCA 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 113

291

EASES protocol. The dynamic EASES protocol omits the pre-generation of hash-chain keys to
reduce the costs of memory usage and preparation time. However, both methods do not solve the
security problem existing in P2P-based MMOGs because the attacker can still forge event update
messages except the first message signed by public-key cryptography. In 2009, Li et al. [14] made
an improvement on the EASES protocol by adding a timestamp in sending event update messages.
But this method is not practical. Later Li et al. proposed another scheme to prevent the replay attack
by adding a unique game session number, while the forgery attack still exits[15]. In 2013, Yuan et
al. proposed a new secure event signature protocol[16]. His protocol based on the discrete
algorithms and bilinear pairing overcomes the forgery attack and replay attack, providing higher
security service than other protocols introduced above. Owing to bilinear pairing requiring more
computation cost, the efficiency is also higher than above protocols.
 In this paper, we propose a new scheme which not only are secure but also makes
communications process more efficient. Our protocol does not need to use public-key cryptography
to sign any event update messages, and only hash operations are required when update messages are
transmitted, enhancing the whole efficiency of our protocol.
 The remainder of this paper is structured as follows. In Section 2 we introduce some
preliminaries. We then review previous protocols and point out their main problems in Section 3. In
Section 4, we propose an improved protocol and analyze its security and performance in Section 5.
Section 6 is the conclusion.

Preliminaries

Discrete Logarithms. Let 1G and 2G be two groups of prime order q, let 1 1 2:e G G G× → be a bilinear
pairing, and let g be a generator of 1G . The discrete logarithm (DL) problem can be expressed as
follows:
 Given 1,P g G∈ , find qn Z∈ such that np g= .
Diffie-Hellman problem [17]. We suppose Alice and Bob wish to agree on a common secret key.
They first need to agree on a large prime number p and an integer g with 2 2g p≤ ≤ − . The prime p
and the primitive root g can be publicly known. The specific agreement process is as follows.
• Alice chooses an integer {0,1,..., 2}a p∈ − randomly. She computes modaA g p= and sends the

result A to Bob, but she keeps the exponent a secret.
• Bob chooses an integer {0,1,..., 2}b p∈ − randomly. He computes modbB g p= and sends the

result to Alice. He also keeps his exponent b secret.
• Alice computes mod moda abB p g p= and Bob computes mod modb abA p g p= . Then the

common key is modabK g p= .
Bilinear Pairing. Let 1G be a cyclic additive group generated by P, whose order is a prime q, and

2G be a cyclic multiplicative group with the same order q. A bilinear pairing is a map

1 1 2:e G G G× → with the following properties:
 Bilinearity: (,) (,) (,)a b b a abe P Q e P Q e P Q= = where 1,P Q G∈ and *, qa b Z∈ .
 Non-degenerative: There exists 1,P Q G∈ such that (,) 1e P Q ≠ .
 Computable: There exists an efficient algorithm to compute (,)e P Q for all 1,P Q G∈ .

Previous Protocols Analysis
In this section we will introduce two previous protocols: the EASES protocol and the protocol of
Yuan et al., and then analyze the problems existing in them. The dynamic EASES and protocols of

Advances in Engineering Research, volume 113

292

Li et al. are similar to the basic EASES in essence, so that they are not introduced here. First, we
define some notations mentioned in protocols' equation in Table 1. Now let us first introduce the
EASES protocol in detail, which is the basis of other protocols.

Table 1. Explanation of notations
notation meanings

r
iK one-time signature playeri generates in the rth round
r
iU event update message playeri sends in the rth round

|x y connection operation between x and y
()H x hash operation of message x
()skS x signature operation of message x with secret key sk
()pkD x decryption operation with corresponding key pk
r
iδ signature signed by the rth one-time signature of playeri

i∆ signature signed by secret key of playeri

The EASES protocol. In 2008, Chan et al. proposed a novel idea that just uses one-time signature
and a series of hash-chain keys to achieve the same cheat-proof properties of digital signatures. In
specific realization playeri first chooses a random number as master key MKi to compute a series of
signature keys. Then only the first one-time signature key will be signed by playeri's private key,
and other keys are based on the relationship of the hash-chain keys. So minimal digital signature
operations enhance the protocol's efficiency. The EASES protocol has four phases: initialization
phase, signature phase, verification phase and re-initialization phase. Actually, the last phase is not
necessary and not described in our paper.

Initialization Phase. a) Playeri first chooses a random number as the master key MKi and then
computes a series of one-time signature keys ()n

i iK H MK= and 1 ().n n
i iK H K− = The computation

process is shown in Fig. 1.

1 0
1() () ()

....n n
i i i i

nH MK H K H Ki i iMK K K K−→ → →
Fig. 1. Production process of hash chain keys.

 b) Sign the first one-time signature key 0
iK by playeri's private key and broadcast the signature

0()i sk iS K∆ = to others. Note that the hash-chain keys are used in the reverse order from 0
iK to .n

iK

Because of the one-way property of hash functions, it is impossible to figure out 1
iK to n

iK from 0
iK .

Signature Phase. In the first round, playeri sends the message 1 1 1 0(|), ,i i i i iH K U Kδ = ∆ to other

players. In the rth round, playeri sends the message 1 1(|), ,r r r r r
i i i i iH K U U Kδ − −= to other players. Eq.

1 shows the messages sent by playeri.

1 1 1 0

1 1

(|), ,

(|), ,
i i i i i
r r r r r
i i i i i

H K U K

H K U U K

δ

δ − −

 = ∆

=
 (1)

Verification Phase. Playerj who receives the event update messages from playeri should do the

following operations to verify them.
a) In the first round, playerj should verify the legitimation of 0

iK . If the equation 0 ()i pk iK D= ∆
holds, it declares 0

iK is legitimate.

Advances in Engineering Research, volume 113

293

b) In the rth round, playerj first verify the legitimation of 1r
iK − by the equation 2 1()r r

i iK H K− −=
where 2r

iK − is received in the former round. Then 1 1 1? (|)r r r
i i iH K Uδ − − −= is verified to see whether

the update message is modified or not. If all verification passes, it shows the update message can be
accepted as valid.

A main problem residing in this protocol is that the receiver cannot know whether the messages
are modified or not. We know 0

iK is signed by playeri's private key and it can be verified by
receivers. Consequently, 1,..., n

i iK K can also be verified because the relationship of the hash-chain
keys. However, the attacker can modify the verification message such as the hash value to satisfy
event update messages that have been modified by himself. Receivers then know nothing about
what has happened.

Suppose playerk is an attacker who wants to forge the update messages sent to playerj from
playeri. In the first round, playeri sends the first message 1 1 1 0(|), ,i i i i iH K U Kδ = ∆ to playerj. Playerk
can intercept it and record 0 .iK When playeri sends the second message 2 2 2 1 1(|), ,i i i i iH K U U Kδ = to
playerj, playerk can intercept it and record 1

iK . Playerk then replaces 1
iU with a new update message

1*
iU , computes 1 1*(|)i iH K U and sends message 1 1 1* 0(|), ,i i i i iH K U Kδ = ∆ to playerj. In the same way,

when playeri sends the rth message 1 1(|), ,r r r r r
i i i i iH K U U Kδ − −= to playerj, playerk can intercept it,

record 1r
iK − and send a forged message 1 1 (1)* (2)* 2(|), ,r r r r r

i i i i iH K U U Kδ − − − − −= to playerj. Finally,
playerj receives all the forged messages 1* *, ..., r

i iU U and do not know that the attacker playerk has
modified event update messages.
The Protocol of Yuan et al. In 2013, Yuan et al. proposed a higher secure protocol whose security
basis are the discrete logarithms and bilinear pairing. However, the efficiency of this protocol is
lower because of bilinear pairing.

Initialization Phase. a) Playeri chooses a master key x and computes a series of one-time
signature keys ()n

iK H x= , 1 ().n n
i iK H K− =

b) Compute ,x
pubP g= where g is the generator of cyclic additive group. Playeri then broadcasts

pubP to other receivers.

c) Sign the first one-time signature with his or her private key and broadcast 0(|)i sk i iS ID K∆ = ,
where iID denotes the identity of playeri.

Signature Phase. In the first round, playeri sends the message 1 1 1(| | | #) ,x
i i i iH K U ID gnoδ =

0, , , #i i iID K gno∆ to other players. #gno is not a duplicate value, and different session has
different #.gno In the rth round playeri sends message 1(| | | #) , , ,r r r x r

i i i i i iH K U ID gno ID Uδ −=
1, #r

iK gno− to other players. Eq. 2 shows the messages sent by playeri.

1 1 1 0

1 1

(| | | #) , , , , #

(| | | #) , , , , #

x
i i i i i i i
r r r x r r
i i i i i i i

H K U ID gno ID K gno

H K U ID gno ID U K gno

δ

δ − −

 = ∆

=
 (2)

Verification Phase. In the first round, playerj should verify the equation 0| ()i i pk iID K D= ∆ . If

the equation holds, it declares 0
iK is legitimate. In the rth round, playerj first verifies the legitimation

of 1r
iK − by the equation 2 1().r r

i iK H K− −= Then playerj verifies 1 1 1(,)? ((| | |r r r
i i i ie g e H K U IDδ − − −=

Advances in Engineering Research, volume 113

294

#),)pubgno P to see whether the event update message is modified or not, where 1r
iδ − is received in

the former round. If all verification passes, it shows the update message is integrated.
 According to the bilinear pairing, we know 1 1 1(,) ((| | | #) ,)r r r x

i i i ie g e H K U ID gno gδ − − −= =
1 1 1 1((| | | #),) ((| | | #),)r r x r r

i i i i i i pube H K U ID gno g e H K U ID gno P− − − −= , and each player can verify
event signature by the public parameter pubP but cannot re-compute it without the random number x.

The only way to obtain it is to compute it by the public parameter x
pubP g= , which means that its

difficulty equals to solving the DL problem. So this protocol is much safer than previous protocols.
Whereas, the security is achieved at the expense of its efficiency.

Our Proposed Protocol
Design Principles. We find in the EASES protocol all information to compute hash verification is
directly transmitted in public form, and therefore it is easy for attackers to forge corresponding hash
values of fake messages. This process is transparent to the receiver, for those fake update messages
can pass his or her verification. To prevent this attack, some information must be transmitted in a
private way. The protocol of Yuan et al. solves the security problem with discrete logarithms and
bilinear pairing. However, just as what he says in paper, the efficiency is not good enough due to
bilinear pairing. In order to enhance efficiency under the premise of security, we make any two
players agree on a common secret key through key agreement protocol before sending the first
update message. This secret key is used to sign later update messages for each round between them.
Because it is not directly transmitted in the whole process, attackers cannot work out the key value
with intercepted messages, ensuring good security. Moreover, only hash operations are required on
both sides when update messages are sent, which enhances the whole efficiency.
Our Protocol. In our protocol, Diffie-Hellman key agreement protocol is selected to help any two
players agree on a common secret key, which has been introduced in Section 2. To prevent
negotiation process from being attacked by intermediary when they send their public keys to others,
every player's public key will be put on central server when he or she joins the P2P networks. A
sender can securely obtain a receiver's public key from central server, and then compute a secret
key with his or her own private key. Simultaneously, the receiver can also figure out the same key
in the similar way. Communications security of later update messages between them will be
guaranteed by this common key. Our protocol has three phases: initialization phase, signature phase
and verification phase. The specific process is as follows.

Initialization Phase. a) Suppose playerj is one of receivers, playeri first gets playerj's public key
modjxjpk g p= from the central server and computes a secret key with his or her own private key.

This common secret key between them denotes *(,) mod mod .i i jx x x
jsk i j pk p g p= = p and g are

publicly known for Diffie-Hellman key agreement protocol.
b) Playeri chooses a random number as the master key MKi and computes a series of one-time

signature keys ()n
i iK H MK= and 1 ().n n

i iK H K− = The hash-chain keys are used in the reverse order
from 0

iK to n
iK . Playeri then sends 0(| (,))i iH K sk i j∆ = to playerj.

Signature Phase. When playeri sends event update messages to playerj, he or she should do the
following operations:

a) In the first round, playeri sends the message 1 1 1 0(| | (,) | #), , , #i i i i iH K U sk i j gno K gnoδ = ∆ to
playerj. #gno is the game session number.

b) In the rth round, playeri sends the message 1 1(| | (,) | #), , , #r r r r r
i i i i iH K U sk i j gno U K gnoδ − −=

to playerj. Eq. 3 shows the messages sent to playerj.

Advances in Engineering Research, volume 113

295

1 1 1 0

1 1

(| | (,) | #), , , #

(| | (,) | #), , , #
i i i i i
r r r r r
i i i i i

H K U sk i j gno K gno

H K U sk i j gno U K gno

δ

δ − −

 = ∆

=
 (3)

Verification Phase. First, playerj figures out (,)sk i j in the same way as playeri does. This

value *(,) modi jx xsk i j g p= is the same as playeri's.
a) In the first round, playerj should verify the legitimacy of 0

iK . He or she verifies it through the
equation 0(| (,))?i iH K sk i j = ∆ . If the equation holds, playerj can be sure 0

iK is legitimate.
b) In the rth round, playerj first verifies 2 1? ()r r

i iK H K− −= to see if the signature key 1r
iK − is

legitimate, where 2r
iK − is received in the (r-1)th round. If the equation holds, playerj next uses

1 1, , (,), #r r
i iK U sk i j gno− − to re-compute a hash value to verify whether it equals to the received value

1r
iδ − or not. If it holds, playerj can be sure that the update message is from playeri and has not been

modified. Fig. 2 shows the main process of this protocol.

1 0, , , #i i iK gnoδ ∆ 0 0verify by (| (,))?i i iK H K sk i j = ∆

1 1 0 1 1 1verify by ()? and ? (| | (,) | #)i i i i i iU H K K H K U sk i j gnoδ= =

iPlayer jPlayer

2 1 1, , , #i i iU K gnoδ

3 2 2, , , #i i iU K gnoδ

1 2 2, , , #r r r
i i iU K gnoδ − − −

1 1, , , #r r r
i i iU K gnoδ − −

2 2 1 2 2 2verify by ()? and ? (| | (,) | #)i i i i i iU H K K H K U sk i j gnoδ= =

2 2 3 2 2 2verify by ()? and ? (| | (,) | #)r r r r r r
i i i i i iU H K K H K U sk i j gnoδ− − − − − −= =

1 1 2 1 1 1verify by ()? and ? (| | (,) | #)r r r r r r
i i i i i iU H K K H K U sk i j gnoδ− − − − − −= =

Fig.1. The process of our protocol

Security And Performance Analysis
Security Analysis. Our protocol can prevent the forgery attack and replay attack. In the EASES
protocol, event update messages are transmitted in the public form, so that it is possible for the
attacker to construct new ones and forge fake signatures with update messages intercepted. For
example, a sender sends two messages 1 1(|), ,r r r r r

i i i i iH K U U Kδ − −= in the rth round and
1 1 1(|), ,r r r r r

i i i i iH K U U Kδ + + += in the (r+1)th round. The attacker can intercept both of them and get
,r r

i iU K . Then he or she could generate a new signature * *(|)r r r
i i iH K Uδ = with fake *r

iU , and sends
the messages * * 1 1(|), ,r r r r r

i i i i iH K U U Kδ − −= and 1 1 1 *(|), ,r r r r r
i i i i iH K U U Kδ + + += to the receiver. *r

iU
will be accepted as valid. This process is transparent to the receiver. However, in our protocol, even
if ,r r

i iU K and #gno are public to the attacker when the (r+1)th round message 1 1 1(| |r r r
i i iH K Uδ + + +=

(,) | #), , , #r r
i isk i j gno U K gno is intercepted, the attacker cannot also forge a verification *r

iδ for *r
iU

because this secret key (,)sk i j is invisible. Therefore, the attacker's forged update message *r
iU

cannot pass the receiver's verification. The forgery attack is prevented. Another way for the attacker

Advances in Engineering Research, volume 113

296

to try is to gain private key x of the sender by his or her public key (mod)xpk g p= with g and p,
whose difficulty equals to solving the Diffie-Hellman problem.

In our protocol, each round has a different one-time signature key, and these keys can be verified
by the relationship 1 ()r r

i iK H K− = , guaranteeing that messages replayed by an attacker are not
accepted as valid. Simultaneously, #gno is not a duplicate value representing one-time session,
and different session has different #gno . It is used to prevent an attacker from collecting the
messages that the normal player has sent in a whole session, and then replaying them to
impersonate that player. Thus, the replay attack is also prevented by our protocol.
Performance Analysis. In the initialization phase, there are many time-consuming one-time
operations for all protocols. Because they won't be operated when event update messages are sent,
we don't consider them here.

Table 2. The comparisons of other protocols and ours

Protocols Our protocol Basic EASES Protocol of Yuan et al.
Signature phase (N-1)hash 1hash 1hash + 1ep
Verification phase (N-1)hash (N-1)hash 2(N-1)bp + (N-1)hash
Total cost 2(N-1)hash N hash 2(N-1)bp+N hash+1ep

Table 2 shows what operations a player need to do for each round, in which N denotes the

number of players, hash denotes one hash operation, bp denotes one bilinear pairing operation and
ep denotes one exponent operation. From the comparisons, we can see that in the signature phase,
our protocol computes N-1 times hash operations instead of one like basic EASES, because any two
players have a different secret key. And the protocol of Yuan et al. requires one hash operation and
one exponent operation in this phase. When a player's update message is verified in the verification
phase, the basic EASES protocol and ours just need to compute one hash operation, however,
besides that, Yuan et al.'s has to compute two additional more time-consuming pairing operations.

2(1) 2

2(1) 1
2(1)

N hasha
Nhash

N bp Nhash ep bpb
N hash hash

− = ≈
 − + + = ≈

−

 (4)

According to total cost and Eq. 4, the computation cost of our protocol is about twice that of the

basic EASES protocol, and much less than Yuan et al.'s. In Intel i3 processor of Yuan et al. [16],
executing 10 hash operations needs about 1ms and 200ms of a pairing operation. To make the result
of comparison more clear, Fig. 3 shows the change of one player's CPU time usage in each round
for different protocols as the number of players increases. From this figure we can see the
computation cost of Yuan et al. is far higher than the basic EASES protocol and ours.

Advances in Engineering Research, volume 113

297

0 20 40 60 80

0

2000

4000

6000

8000

10000

Number of concurrent players

To
ta

l C
PU

 ti
m

e
us

ag
e

of
 a

 p
la

ye
r(m

s)

our protocol
the basic EASES
protocol of W Yuan

Fig.2. A comparison of total CPU time usage in different protocols.

Conclusions
In this paper, we first introduce several previous event signature protocols based on peer-to-peer
architectures and then point out their problems about security and efficiency. To have a better
efficiency with security, we propose an improved one with the Diffie-Hellman key agreement
protocol. Our protocol has achieved the two basic requirements of unforgeability and verifiability,
and is capable of preventing the forgery attack and replay attack. Moreover, when event update
messages are transmitted, only hash operations are required, which makes the efficiency of our
protocol close to the original one and better than Yuan et al.'s. Meanwhile, the security is
guaranteed by the Diffie-Hellman problem. In the following work, we plan to improve this protocol
considering its fair retransmission mechanism and better real-time.

Acknowledgements
This work was financially supported by the European Seventh Framework Program(FP7)
(GA-2011-295222) and the National Sci-Tech Support Plan of China (2014BAH02F03).

References
[1] Liu L, Jones A, Antonopoulos N, et al. Performance evaluation and simulation of peer-to-peer

protocols for Massively Multiplayer Online Games. Multimedia Tools and Applications, 2015,
74: 2763-2780

[2] Yahyavi A, Kemme B. Peer-to-peer architectures for massively multiplayer online games: A
Survey. ACM Computing Surveys, 2013, 46: 28-36

[3] Voulgari I, Komis V, Sampson D G. Player Motivations in Massively Multiplayer Online
Games. 14th IEEE International Conference on Advanced Learning Technologies (ICALT),
Athens, GREECE, 2014: 238-239

[4] Kavalionak H, Carlini E, Ricci L, et al. Integrating peer-to-peer and cloud computing for
massively multiuser online games. Peer-to-Peer Networking and Applications, 2015, 8:301-319.

[5] Suznjevic M, Matijasevic M. Player behavior and traffic characterization for MMORPGs: a
survey. Multimedia Systems, 2013, 19:199-220

[6] Nae V, Iosup A, Prodan R. Dynamic Resource Provisioning in Massively Multiplayer Online
Games. IEEE Transactions on Parallel and Distributed Systems, 2011, 22:380-395

[7] Abdulazeez S A, Rhalibi A E, Merabti M, et al. Survey of solutions for Peer-to-Peer MMOGs.
International Conference on Computing, Networking and Communications, Anaheim, CA, 2015.
1106-1110

Advances in Engineering Research, volume 113

298

[8] Carter C, Rhalibi A, Merabti M, et al. Hybrid client-server peer-to-peer framework for MMOG.
International Conference on Multimedia and Expo, Singapore, 2010. 1558-1563

[9] Knutsson B, Lu H, Xu W, et al. Peer-to-Peer Support for Massively Multiplayer Games. 23rd
Annual Joint Conference of the IEEE Computer and Communications Societies, Hong Kong,
2004. 96-107

[10] Miller J L, Crowcroft J. The near-term feasibility of P2P MMOG's. Network and Systems
Support for Games (NetGames), 2010 9th Annual Workshop on, Taipei, 2010. 1-6

[11] Gilmore J S, Engelbrecht H A. A survey of state persistency in peer-to-peer massively
multiplayer online games. IEEE Transactions, 2012, 23: 818-834

[12] Fan L, Trinder P, Taylor H. Design issues for Peer-to-Peer Massively Multiplayer Online
Games. International Journal of Advanced Media and Communication, 2010, 4:108-125

[13] Chan M C, Hu S Y, Jiang J R. An efficient and secure event signature (EASES) protocol for
peer-to-peer massively multiplayer online games. Computer Networks, 2008, 52: 1838-1845

[14] Li C T, Wei C H, Chin Y H. A secure event update protocol for peer-to-peer massively
multiplayer online games against masquerade attacks. International Journal of Innovative
Computing Information and Control, 2009, 5: 4715-4723

[15] Li C T, Lee C C, Wang L J. On the security enhancement of an efficient and secure event
signature protocol for P2P MMOGs. International Conference on Computational Science and Its
Applications, Fukuoka, 2010. 599-609

[16] Yuan W, Hu L, Li H T et al. Secure event signature protocol for peer-to-peer massive
multiplayer online games using bilinear pairing. Security and Communication Networks, 2013,
6: 881-888

[17] Diffie W, Hellman ME. New directions in cryptography. IEEE Trans Inf Theory, 1976, 22:
644-654

Advances in Engineering Research, volume 113

299

