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Abstract: In order to find the best type-reduction algorithm of interval type-2 fuzzy sets with 
different characteristics, this paper makes a comparative analysis of KM, EKM, IASC and EIASC. 
Experiments are carried out on three type-2 fuzzy sets to compare the four algorithms.The results 
show that the four algorithms can accurately find the switching points, and the EIASC algorithm is 
the most efficient. This study provides an accurate and reliable comparative analysis for evaluating 
the applicability of the algorithm on different data characteristics. 

Introduction 

Type-reduction is used to calculate the centroid of type-2 fuzzy set, which is the main operation 
of the type-2 fuzzy inference[1]. Type-2 fuzzy rules of type-2 fuzzy systems are represented by 
type-2 fuzzy sets, and the output of type-2 fuzzy systems is a type-2 fuzzy set. Therefore, it is 
necessary to reduce it to type-1 fuzzy set, and then the fuzzy set is transformed to the exact value by 
defuzzifing[2]. At present, the classical method of type-reduction are as follows: the Karnik-Mendel 
(KM) algorithm is the most used method in Type-2 fuzzy logic applications[3]; based on the KM 
algorithm, Wu et al. proposed EKM algorithm with higher efficiency[4]; Melgarejo based on the 
EKM algorithm, proposed IASC(Iterative Algorithm with Stop Condition) algorithm for a new stop 
condition[5]; Wu made two improvements to IASC, and proposed EIASC(Enhanced IASC) 
algorithm[6]. Type reduction is much more time-consuming than defuzzification. Therefore, making 
type reduction more efficient can do good to the growing interest in using type-2 fuzzy systems 
[7-10]. 

In this paper, KM, EKM, IASC and EIASC are compared and analyzed, trying to find the 
type-reduction algorithm suitable for different data characteristics of the interval type-2 fuzzy set. 
This paper using four kinds of type-reduction algorithm for different types of type-2 fuzzy sets for 
experiments, aiming to provide more accurate and reliable evaluation of type-reduction algorithm 
and to provide effective reference for type-reduction method improvement. 

Interval type-2 fuzzy sets (IT2-FS) 

Definition 1. A T2 FS, denoted A~ , is characterized by a (3D) T2 MF ),(~ uxAµ , where Xx∈  

International Forum on Mechanical, Control and Automation (IFMCA 2016)

Copyright © 2017, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Engineering Research, volume 113

408



and ]1,0[⊆∈ xJu  
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~ ⊆∈∀∈∀= xA JuXxuxuxA µ                               （1） 

In which 1),(0 ~ ≤≤ uxAµ , A~  is also expressed as 

),/(),(~
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x
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= µ     ]1,0[⊆xJ                                   （2） 

Where ∫∫ denotes union over all admissible x  and u . For discrete universes of discourse 

∫ is replaced by ∑ . xJ  is called the primary membership of x, and ),(~ uxAµ  is called the 

secondary grade, and for an interval T2 FS all 1),(~ =uxAµ . An interval T2 FS is denoted as  

}]1,0[,)1),,{((~
⊆∈∀∈∀= xJuXxuxA                                     （3） 
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∫ ∫∈ ∈
=       

KM and EKM algorithm 

Computing the generalized centroid of an IT2-FS is an important step in the operation of an 
Interval Type-2 Fuzzy Logic System (IT2-FLS). Although several algorithms have been proposed to 
compute it, the Karnik-Mendel (KM) algorithm is the most used method in Type-2 fuzzy logic 

applications. The centroid of IT2-FS can be expressed as an interval number ],[ rl cc , and can be 

computed from the lower and upper membership functions of the FOU( A~ ) in the following way:  
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Where N is the number of sampling points, )( ixf  and )( ixf  is the membership value of UMF 

and LMF, L and R is the left and right switching points. 

A. KM for Computing lc  

Step 1: Sort ),...,1( Nixi =  in increasing order, and match the membership )( ixf  and )( ixf  

with their respective ix , and renumber them so that index corresponds to the numbered ix . 
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Step 2:Initialize )( ixf  by setting   
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Step 3:Find switch point L( 11 −≤≤ NL ) such that 1+≤≤ LL xyx  

Step 4:Set  
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Step 5:If 'yy = ,stop and set 'ycl = ,the switch point is L; otherwise, set 'yy = and got Step 3. 

B. KM for Computing rc  

Step 1:The same as Step 1 of KM for computing lc . 

Step 2:The same as Step 2 of KM for computing lc . 

Step 3:Find switch point R( 11 −≤≤ NR ) such that 1+≤≤ RR xyx  
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Step 5:If 'yy = ,stop and set 'ycr = ,the switch point is R; otherwise, set 'yy = and got Step 3. 

C. EKM for Computing lc  

Step 1:  The same as Step 1 of KM for computing lc . 

Step 2: Set k=[N/2.4](the nearest integer to N/2.4) 

Step 3:Compute   ∑ ∑
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Step 4:Find 'k ( 11 −≤≤ Nk ) such that 1'' +
≤≤ kk xyx . 

Step 5:If kk =' ,stop and return ycl = ,L=k; otherwise,continue 
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Step 6:Compute  )( ' kksigns −=  

∑
+=

−+=
),max(

1),min(

'
'

'

))()((
kk

kki
iii xfxfxsaa  , ∑

+=

−+=
),max(

1),min(

'
'

'

))()((
kk

kki
ii xfxfsbb , ''' /bay =  

Step 7:Set 'yy = , 'aa = , 'bb =  and 'kk = . Go to Step 4. 

D. EKM for Computing rc  

Step 1: The same as Step 1 of KM for computing rc . 

Step 2: Set k=[N/1.7](the nearest integer to N/1.7) 

Step 3:Compute ∑ ∑
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Step 4:Find 'k ( 11 −≤≤ Nk ) such that 1'' +
≤≤ kk xyx . 

Step 5:If kk =' ,stop and return ycr = ,R=k; otherwise,continue 

Step 6:Compute )( ' kksigns −=  
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Step 7:Set 'yy = , 'aa = , 'bb =  and 'kk = . Go to Step 4. 

IASC and EIASC algorithm 

A. IASC for Computing lc  

Step 1:  The same as Step 1 of KM for computing lc . 

Step 2:Initialize ∑
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Step 3:Compute L=L+1 , ))()(( LLL xfxfxaa −+=  , ))()(( LL xfxfbb −+= , bac /=  

Step 4:If lcc > ,stop and return L=L-1; otherwise, set ccl = ,go to Step 3. 

B. IASC for Computing rc  

Step 1:The same as Step 1 of KM for computing lc . 

Step 2:Initialize 
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Step 3:Compute    R=R+1 

))()(( RRR xfxfxaa −+= , ))()(( RR xfxfbb −+= , bac /=  

Step 4:If rcc < ,stop and return R=R-1; otherwise, set ccr = ,go to Step 3. 

C. EIASC for Computing lc  

Step 1,Step 2 and Step 3 : The same as IASC for computing lc . 

Step 4:If 1+≤ Ll xc ,stop and return L=L-1; otherwise, set ccl = ,go to Step 3. 

D. EIASC for Computing rc  

Step 1: The same as Step 1 of IASC for computing rc . 

Step 2:Initialize 
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Step 3:Compute 
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Step 4:If Rr xc > ,stop and return R; otherwise, go to Step 3. 

Experimental comparison 

In this section we compare the performance of the four type-reduction algorithms (KM, EKM, 
IASC, and EIASC) using three simulations. The cycle times of various algorithms are compared in 
order to evaluate the efficiency of each algorithm, and then compare the centroid ],[ rl cc  of T2 FS 
and the switch points ],[ rl xx  obtained by the different algorithms in order to evaluate convergence 
of each algorithm. 
A. Experiment 1 

Principal membership function of type-2 fuzzy set is a symmetric Gauss function, and the mean 
fixed, the variable of variance. It is expressed as follows: 

)]/)5((5.0exp[)( 2σµ −−= xx  

Where ]75.1,25.0[∈m , ]10,0[∈x . We shown the membership function in Fig.1. The cycle 

times of each algorithm in Table 1, and the centroid and switch points in Table 2. 
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Table 4 The centroid and switch points of each algorithm 
N 

Algorithm 
100 500 1000 5000 

KM 

IASC 

EIASC 

 

cl 0.8672 0.8899 0.8928 0.8951 

L 9 45 90 448 

xl 0.800 0.8800 0.8900 0.8940 

cr 1.880 1.8882 1.8892 1.8900 

R 19 95 189 945 

xr 1.800 1.8800 1.8800 1.8880 

EKM 
cl 0.8461 0.8849 0.8902 0.8946 

cr 1.880 1.8886 1.8894 1.8901 

 

     
   Fig.1 Principal membership function 

B. Experiment 2 
Principal membership function of type-2 fuzzy set is a Gauss function, and the variance fixed, 

the variable of mean. It is expressed as follows: 

)])((5.0exp[)( 2mxx −−=µ  

Where ]75.1,25.0[∈m , ]10,0[∈x . We shown the membership function in Fig.2.The cycle times 
of each algorithm in Table 3, and the centroid and switch points in Table 4. 

  
 

  
Fig.2 Principal membership function 

 
 

 

In Experiment 1 and Experiment 2, the centroid ],[ rl cc  and the switch points ],[ rl xx calculated 

by KM,IASC and EIASC are the same, but the centroid calculated by the EKM are slightly different 
from the other methods. The reason is related to the iterative formula of the EKM algorithm. In 

Table 1 cycle times of each algorithm 
N 100 500 1000 5000 

KM 1010 4008 8008 40008 

EKM 606 3006 6006 35007 

IASC 103 503 1003 5003 

EIASC 72 360 720 3596 

 

Table 3 cycle times of each algorithm  
N 100 500 1000 5000 

KM 606 3006 7007 30006 

EKM 606 4008 8008 45009 

IASC 30 142 281 1396 

EIASC 91 451 902 4503 

 

Table 2 The centroid and switch points of each algorithm 

N 

Algorithms 
100 500 1000 5000 

KM 

IASC 

EIASC 

 

cl 3.5939 3.5951 3.5953 3.5955 

L 36 180 360 1798 

xl 3.500 3.580 3.5900 3.5940 

cr 6.4061 6.4049 6.4047 6.4045 

R 65 321 641 3203 

xr 6.400 6.400 6.400 6.400 

EKM 
cl 3.5983 3.5949 3.5951 3.5954 

cr 6.4524 6.4119 6.4081 6.4052 
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Experiment 1, the main membership is symmetric Gauss's function. The cycle times of EIASC is 
the least, and the efficiency of EIASC is the highest, followed by IASC. The efficiency of EKM is 
significantly higher than KM. In Experiment 2, the main membership is non symmetric Gauss's 
function. The cycle times of IASC is the least, followed by EIASC.The efficiency of KM is 
significantly higher than EKM. The reason is that the IASC for computing cr start from switch point 
1 and increase it gradually to find the correct switch points,but EIASC computing cr start from 
switch point N and decrease. When the right switch points in the left half of N, the efficiency of the 
EIASC is low. 

Conclusions 

Type-reduction algorithms are very important for type-2 fuzzy sets and systems. In this paper we 
have reviewed several more efficient type-reduction algorithms, and also made an accurate 
comparison and practical implementation of them for interval type-2 fuzzy sets using simulated data. 
Experimental results showed that the centroid calculated by EKM is not as accurate as KM, IASC 
and EIASC. The reason is related to the iterative formula of the EKM algorithm. When the left and 
right switching points are in the middle position, the EIASC and EKM algorithms are more efficient 
than the IASC and KM algorithms. Otherwise, the efficiency of EKM and EIASC are not as good 
as the KM and IASC algorithms. This study will be very helpful in improving type-reduction 
algorithms and promoting the popularity of type-2 fuzzy sets and systems. 
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