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Abstract. In this paper, a method for automatic segmentation of plant point cloud is proposed. We get 
the quasi-dense point cloud of plant from Multi-view stereo reconstruction based on surface 
expansion. The Adaptive Normalized Cross-Correlation algorithm is used as matching cost to match 
points of interest in two images, which is robust to radiometric factors and can reduce the fattening 
effect of boundaries. An efficient segmentation framework is proposed to segment plant from 
background. After oversegmenting the input point cloud, we extract the 3D feature for each segment 
and calculate conditional label probabilities using a Random Forest classifier. The out of the classifier 
is to initialize the unary potentials of a dense CRF whose optimization yields the final labeling. A 
highly efficient approximate inference algorithm based on mean field approximation is applied to the 
dense CRF models, in which the pairwise edge potentials are defined by Gaussian kernel. 
Experimental results show that our segmentation framework based on dense CRF can separate plant 
from background effectively. 

Introduction 
In the greenhouse crop cultivation, plant point cloud segmentation from background has significant 

implication. Plant structural attributes such as height, crown diameter, canopy based height, basal area 
can be derived. The three-dimensional structure of plants can show the real-time continuous 
information in the whole process of crop growth by the most direct way, also it is the most intuitive 
feature for plant phenotype analysis [1]. We get 3D structure information of plants using the 
Multi-view stereo method because it is relatively cheap, convenient and can obtain complete 3D 
structure information. The Multi-view stereo reconstruction based on image sequence is used more 
widely because it can realize automatic calibration of the camera and obtain more complete 3D 
structure information. Multi-view stereo algorithms can be roughly categorized into three classes [2]. 
The first class operates by first computing a cost function on a 3D volume, and then extracting a 
surface from this volume. The second class is image-space method by fusing multiple depth maps. 
The third class is surface expansion method which builds a quasi-dense point cloud from a set of 
matches. In this paper, we propose a Multi-view stereo reconstruction method based on surface 
expansion which iteratively expands a sparse set of initial matches into a quasi-dense point cloud 
representing the surfaces of the scene. In order to overcome the effects of complex natural light 
environments and to obtain more accurate plant point cloud, the Adaptive Normalized 
Cross-Correlation algorithm [3] is used as matching cost to match points of interest in two images, 
which is robust to radiometric factors such as illumination direction, illuminant color and imaging 
device changes. The ANCC method also can reduce the fattening effect that object boundaries are not 
reconstructed correctly, which the Zero-mean Normalized Cross-Correlation (ZNCC) suffers from. 

We segment the plant from background after getting point cloud from above Multi-view stereo 
reconstruction method. The segmentation of 3D point cloud can be roughly categorized into five 
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classes [4]: edge based methods, region based methods, attributes based methods, model based 
growing methods, and graph based methods. Silberman et al. [5] trains a neural network classifier and 
applies a Conditional Random Field (CRF) model which does not incorporate specific class label 
relations. Valentin et al. [6] builds a triangulated meshed representation of the scene and classifies the 
mesh faces with a JointBoost classifier followed by a CRF. Also, their CRF does not take individual 
label relations into account. Wolf et al. [7] trains a Random Forest classifier and formulate a Markov 
Random Field, which only performs spatial smoothing on the classification result. Our work has a 
similar framework compared to Hermans al. [8]. However, we use 3D features instead of 2D features. 
After oversegmenting the input point cloud, we extract the 3D feature for each segment and calculate 
conditional label probabilities using a Random Forest classifier. The out of the classifier is to 
initialize the unary potentials of a dense CRF whose optimization yields the final labeling. The last 
step smoothes the labeling out to correct ambiguous classification results due to noisy local patch 
information. A highly efficient approximate inference algorithm based on mean field approximation 
is applied to the dense CRF models, in which the pairwise edge potentials are defined by Gaussian 
kernel [9].  

Multi-view Stereo Reconstruction 
The proposed approach consists of two steps: structure from motion (SFM: from images to sparse 

points) and dense matching (from sparse points to quasi-dense points). The SFM step is to get 3D 
sparse feature points location of the scene and camera poses (location and orientation). In the dense 
matching step, we use the ANCC algorithm as matching cost to match points of interest for a robust 
and accurate correspondence measure which is robust to radiometric factors and can reduce the 
fattening effect. 

Structure from motion 
An overview of the SFM process is presented in Figure 1. The first step is to find feature points in 

each image. We use the SIFT key point detector [10], because of its invariance to image 
transformations. Other feature detectors could also potentially be used; several detectors are 
compared in the work of Mikolajczyk et al. [11]. In addition to the key point locations themselves, 
SIFT provides a local descriptor for each key point. Next, for each pair of images, we match key point 
descriptors between the pair, using the approximate nearest neighbors package [12], then robustly 
estimate a fundamental matrix for the pair using RANSAC. During each RANSAC iteration, we 
compute a candidate fundamental matrix using the eight-point algorithm [13], followed by 
Levenberg–Marquardt algorithm. After get the fundamental matrix, we convert it to essential matrix 
and then get camera poses from essential matrix [13]. At last, we can get the 3D positions of features 
points through triangulation calculation [13]. 

 
Fig.1 A simplified overview of the SFM process 

 
After get the point cloud of features points between each pair of images, we should merge point 

clouds because these points aren’t in the same coordinate system. Finally, we get 3D position of all the 
feature points in one coordinate system. 
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Dense matching 
In this stage, we expand a sparse set of initial matches into a quasi-dense point cloud representing 

the surfaces of the scene based on the best-first expansion strategy by Lhuillier et al. [14], which is 
robust to initial seed match outliers and efficient in time and space. In order to overcome the effects of 
complex natural light environments and to obtain more accurate plant point cloud, we use the ANCC 
algorithm as matching cost to match points of interest instead of ZNCC. The ANCC method is robust 
to radiometric factors such as illumination direction, illuminant color and imaging device changes and 
also can reduce the fattening effect, which the Zero-mean Normalized Cross-Correlation (ZNCC) 
suffers from.  

The similarity measure between two pixels in the left and right images is defined by the following 
equation. 

( , ') ( , ')( , ') (1 )
3 3

k

k

ANCC p p ANCC p pANCC p p ξ

ξ

θ θ= + −∑ ∑                                                                                   (1) 

where {log _ , log _ , log _ }, { , , }Chrom R Chrom G Chrom B k R G Bξ ∈ ∈ .θ is a relative weighting factor between 
the log-chromaticity color and the original color. ( , ')ANCC p pξ and ( , ')kANCC p p are the similarity 
measure in log-chromaticity and original color space [3]. In log-chromaticity color space, the 
nonlinear relationship that exists between corresponding pixel color values is transformed into a 
linear one, which can handle the various radiometric changes. The similarity measure of original color 
is to increased discriminability lowered by log-chromaticity color. 

The point clouds of from Multi-view stereo reconstruction in different matching method are 
illustrated in Figure 2 and 3. From the result we can see that many points aren’t reconstructed 
correctly (marked by red circle) based on the ZNCC matching method because of the fattening effect. 
And our reconstruction method based on ANCC has more accurate points. 

                   

(a) bust                (b) bunting                   (c) money tree 
Fig. 2 Multi-view stereo reconstruction based on ZNCC 

                    

(a) bust                           (b) bunting                   (c) money tree 
Fig. 3 Multi-view stereo reconstruction based on ANCC 

Advances in Engineering Research, volume 113

489



 

Point Cloud Segmentation of Plant 
To segment the plant from background, first we create an oversegmentation of the scene, clustering 

it into many small homogeneous patches. Second, we extract the 3D feature for each segment. Third, 
we calculate conditional label probabilities using a Random Forest classifier, which are used in the 
final step to initialize the unary potentials of a Conditional Random Field. The CRF model contains 
two pairwise potentials defined by Gaussian kernel, which can not only remove the noise of the 
classifier stage but also resolve ambiguous classification results  

Oversegmentation 
Like the majority of scene segmentation approaches, we calculate an oversegmentation of the input 

point cloud, which takes color and surface orientation into account to group adjacent points together. 
We use the supervoxel clustering algorithm proposed by Papon et al. [15], which is publicly available 
in the PointCloud Library [16].. 

Feature Extraction 
Based on the work of Wolf et al. [7], we calculate a feature vector x for each of the patches 

generated by the oversegmentation,, which captures color information as well as geometric properties 
of the patch. A list of all used features is given in Table 1. 0 1 2λ λ λ≤ ≤  are the eigenvalues of the scatter 
matrix of the patch. 

Table 1: List of all features calculated for each 3D patch 
Feature  
Compactness ( 0λ ) 
Planarity ( 1 0λ λ− ) 
Linearity ( 2 1λ λ− ) 
Angle with ground plane (mean and std. dev.) 
Height (top, centroid, and bottom point) 
Color in CIELAB space (mean and std. dev.) 

Random Forest Classifier 
We use a standard Random Forest classifier [17] to get a probabilistic output. RFs have the 

advantage that they can cope with different types of features without the need for any further 
preprocessing of the feature vector. We adapt the default training procedure for RFs to our application, 
such that we end up with a pre-defined number of trees recursively splitting up the data with respect to 
the evaluation of randomly chosen split functions. Leaf nodes are created at the defined final depth 
level of the trees or if data cannot be split up any further. These nodes store the distribution of the 
labels of the training data which has reached the respective node. The conditional probability   of label 
being assigned to a patch with feature vector is then defined as the mean of all label distributions 
stored in the reached leaf nodes. 

Dense Conditional Random Field 
After the initial segmentation, there still exist some small isolated regions. Therefore we need to 

classify these regions to what they belong to. In image processing area, a common approach is to pose 
this problem as maximum a posteriori (MAP) inference in a conditional random field (CRF) defined 
over pixels or image patches [18-21]. The CRF potentials incorporate smoothness terms that 
maximize label agreement between similar pixels, and can integrate more elaborate terms that model 
contextual relationships between object classes. 

In this paper, we use a fully connected CRF that establishes pairwise potentials on all pairs of 
patches in the point cloud. Consider a random field X defined over a set of variables{ }1 ,  . . . ,  NX X . 
The domain of each variable is a set of labels { }1 2  ,  L l l= . Consider also a random field I defined over 
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variables{ }1 ,  . . . ,  NI I . In our setting, jI is the feature vector of patch j and jX is the label assigned to 
patch j . The corresponding Gibbs energy of the fully connected pairwise CRF model is 

( ) ( ) ( ,  )u i p i j
i i j

E x x x xψ ψ
<

= +∑ ∑ .                                                                                                                                                  (2) 

where i and j range from 1 to N. A conditional random field ( ),  I X is characterized by a Gibbs 

distribution exp( ( ) )( | )
( )
E xP x I

Z I
= . The maximum a posteriori (MAP) labeling of the random field 

is * arg max ( | )Nx L
x P x I

∈
= . The unary potential is computed independently for each patch by the RFs 

classifier. The pairwise potentials in our model have the form 
( ) ( ) ( )
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where k is a Gaussian kernel ( ) ( )1( ,  ) exp(- ( -  ) ( -  ))
2

m T m
i j i j i jk f f f f f f= Λ , the vectors if and jf are feature 

vectors for patch i and j in an arbitrary feature space and µ is a label compatibility function. A simple 
label compatibility function µ is given by the Potts model ( ,  ) [ ]i j i jx x x xµ = ≠ . For our points labeling 
problem, we define two kinds of kernel functions. The first one is a smoothness kernel, which is only 
active in the local neighborhood of each voxel and reduces the classification noise by favoring the 
assignment of the same label to two close voxels with a similar surface orientation 

(1)
2 2
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where p are the 3D patch positions and n are the respective surface normal. The second kernel function 
is an appearance kernel, which also allows information flow across larger distances between voxels of 
similar color 

(2)
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where c are the color vectors of the corresponding patches. 
Usually the complexity of inference in fully connected models has restricted their application. We 

use a highly efficient inference algorithm based on a mean field approximation to the CRF 
distribution [9]. This approximation yields an iterative message passing algorithm for approximate 
inference. As message passing in the presented model can be performed using Gaussian filtering in 
feature space, we utilize highly efficient approximations for high-dimensional filtering, which reduce 
the complexity of message passing from quadratic to linear. The result after inference of fully 
connected CRF is show in Figure 4. We can see that the plants are successfully segmented from the 
background. 

          

(a) input point cloud         (b) results after CRF 
Fig. 4 Results after dense CRF inference 
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Conclusion 
We introduced an efficient segmentation framework for plant point clouds, which combines a 

Random Forest classifier with a dense Conditional Random Field. We use a highly efficient 
approximate inference algorithm based on mean field approximation for the dense CRF models, 
which can not only remove the noise of the classifier stage but also resolve ambiguous classification 
results. Our method achieves good results for the plants in the greenhouse. 

In the future, we will study other point cloud segmentation algorithms to get organs such as leaf, 
stem and fruit from plant to realize accurate measurement of plant organs. 
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