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Abstract. This paper presents a novel fault identification method based on object oriented Bayesian 
network (OOBN) and dynamic fault probability according to the structure-function relationship and 
the failure mode effect analysis (FMEA) of the diagnosed system. Fault identification of complex 
electromechanical system is difficult. The diagnostic model is in real time because it considers the 
change of fault probability depending on the working time and the system function state influenced by 
degradation of component reliability. The peculiarities of proposed approach are that the diagnosis 
model is hierarchical and dynamic, to depict actual character of nodes. Furthermore, the model is 
reusable and expandable. The application of ISG-engine in hybrid electric bus demonstrates the 
effectiveness and superiority of the approach. 

Introduction 
Energy diversification and the growing need for autonomous agents that control physical systems 

motivate the occurrence of complex hybrid systems. Larger-scale and more sophisticated system is 
more knowledge. Each of subsystems interrelates with each other. And what’s more, the components 
function is degraded with working time. Fault probability always alters. We hope to detect the 
abnormal behavior and diagnose the failure for the system. Traditional fault diagnosis methods 
become difficult to complete this task. The intelligent diagnosis research has been focus on for this 
reason. 

In recent years, some expert systems (Wang et al, 2010) and intelligent diagnosis methods based 
on model (David and Jose, 2000)had been made certain progress. Li (2006), Lerner (2000) and 
Bobbioa (2001) have shown that Bayesian Network is an useful classification for fault diagnosis since 
it explicates independencies between system components and diagnostic observations. Research on 
Bayesian network became especially popular . One of the critical issues in using Bayesian network as 
diagnostic tools is the construction of accurate and flexible diagnosis model. The majority of papers 
have been published related to creation of Bayesian network diagnosis model. Duan (2010) fused  
Bayesian Network and fault tree together for fault diagnosis to improve the diagnostic efficiency. 
Kawahara (2005) constructed a Dynamic Bayesian network for thrusters in maneuver of spacecraft 
using Kalman Filter Models(KFMs) and Hidden Markov Models(HMMs). However these methods 
don’t give consideration to function states of systems and components, and moreover, they need 
effective algorithms to compute the transition matrix that defines the probabilities linking all states 
(David et al., 1999). 

In this paper, we introduce an Object Oriented Approach and dynamic fault probability to define a 
dynamic fault diagnosis model. Firstly, we analyze structure-function and failure mode effect of 
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system and construct BN for function object, then construct DBN for component object. Finally, the 
fault diagnosis model of ISG-engine based on OODBN is presented and the results are given. 

Bayesian Network For Function Object 
There are two technologies to construct fault diagnosis model based on OOBN. One is Top-Down 

Modeling (Bangso et al., 2000; Daphne et al., 1997). System fault is beginning node of BN. Then 
node objects are created and built into the BN. Another is Bottom-Up modeling (Weber et al., 2002). 
The BN model is designed by analyzing the systemic structure. After the system is decomposed and 
the sub-system objects and component objects are defined, the internal attributes of object are 
represented by means of BN. Sub-Bayesian Networks are connected according to relationship 
between sub-system and component. This method reflects the modular modeling idea. 

In this paper, we fused the presented above two methods not only to improve diagnostic ability of 
model but also to help construction and maintenance of complex BN.  The main technologies are 
constructing the BN by using both systemic function analysis and failure mode effect analysis 
(FMEA). Nodes are represented by function objects. Systemic function object lies in the highest level. 
Sub-function objects lie in middle levels. Component objects lie in the lowest level. Objects are 
connected according to relation of functional transmission. Failure modes are represented as attributes 
of function objects using random variables. The model is an OOBN representing whole function and 
states of system. 

 
 
 
 
 
 
 
 
 
                                                                       
 
 
 
 
 

               (a) Serial architecture                                                        (b)Parallel architecture 

Fig. (1). OOBN structure of function object 
The structure of function object is shown in Fig.1, the relation between sub-functions is 

described in serial or parallel architectures. Functioning external resources(FER), functioning 
internal resources(FIR) and functioning constraints(FC) are input nodes. Functioning states (FS) 
information are output nodes.  

In fig. (1a), the states information for sub-function1 transmits sub-function2 by input node 
FER. The states of sub-function1 affect the states of sub-function2. In fig.(1b), the states of 
two sub-functions are independent, the value of FS12 are done by the states of two sub- 
functions jointly. Relationship among function nodes are defined as conditional probability 
(CP). Components are linked with their function object nodes as input nodes. 
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Dynamic Bayesian Network For Component 
Yang has shown that DBN is a BN including a temporal dimension (Shahan et al.,2013). 

The fault probability of components and systems are all in a constant sate of flux with the 
longer service time. The service time of component is separated into slices. States information 
of component corresponding the time slices are described by sets of nodes },...,,{ 10 knnn  , 1−kn  
is parent node of kn . Relationship between kn  and 1−kn  is defined by conditional probability.  

In the process of constructing DBN of component, the network size grows proportionally 
with increment of number of time slices. We reduced the size of network by using the iterative 
reasoning approach. States of component at different time slice are modeled by a simply DBN 
including two nodes as presented in Fig. (2). 

 
                                                                                    
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. (2). DBN structure for the component            Fig.3 OODBN for fault diagnosis 

The Eq.1 is used to compute the normal probability of component at time slice k according 
to failure rate and the sate at previous time slice. 

)()1()( 1 NormalCptNormalCp kk =∆−== −λ                                                                                （1） 
The state probability of component at time slice  1+k  is computed by replacing the sate 

probability at time slice 1−k   with the probability at time slice k. 
The posterior conditional probability of common causal nodes ncom _  for all fault states can 

be calculated as follows. 

)(
)_()_(

)_(
FSP

ncomFSPncomP
FSncomP =                                                                                          （2） 

Where 1)_( =ncomFSP , thus 

)(
)_()_(

FSP
ncomPFSncomP =                                                                                                                （3） 

The function is in a failure state when we diagnose system. Considering )(FSP as a scaling 
factor, conditional probability )_( FSncomP can be determined by )_( ncomP  . 

The posterior conditional probability of causal node nonly _  belonging to a fault state is 
computed as follows.  
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( ) )()( FSPFSFSPFSP kk =                                                                                                                                  （5） 
Where kFS is a definite failure state. Considering )(FSP  as a scaling factor, thus, 
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FSFSP
nonlyPFSnonlyP

k
k =                                                                                                           （6） 

Diagnosis For ISG-Engine Case 
With the increase in complexity of automobiles, automotive system has more and more 

components and sub-systems that interact with each other, fault diagnosis are becoming 
increasingly important and difficult. A diagnosis model that detects and localizes faults is thus 
needed, both as an aid in the repair process and for detecting and isolating faults. The proposed 
method is applied to an example of a ISG-engine system. The configuration of ISG-engine 
hybrid powertrain is shown in Fig. (4) . 

 
 
 
 
 
 
 

 
 

Fig. (4) Configuration of a hybrid powertrain 
FMEA Of ISG-Engine 

Table 1 parts FMEA of ISG-engine 
function sub-system component failure mode effects causes 

Fuel supply Fuel supply 
system 

Fuel injector leak Insufficient power, 
extinction 

Needle valve 
assembly damaged 

injection pump Leak, catching Insufficient power, 
extinction 

Plunger matching 
parts damaged 

Air supply Air supply system 
Throttle position 

sensor 
Throttle 

opening error Unstable idle speed Sensor damaged 
Air flow meter Data error Insufficient power Circuit failure 

firing Firing system 

Spark plug Electrode melt 
etc 

Preignition, 
Severe vibration Small clearance 

Ignition coil Short circuit, 
Broken circuit 

Star-up failure, 
Unstable idle speed Coil breakage 

subloop Short circuit, 
Broken circuit 

Star-up failure, 
Unstable idle speed Coil breakage 

Gas 
distribution Valve mechanism 

valve Abnormal 
sound Supply shortage Excessive clearance 

gear wear Impact, vibration Gear precision 

Power export Crank-link 
mechanism 

crankshaft crack Unstable operation Fatigue stress 
Piston, piston ring Crack, wear Insufficient power friction 

cylinder Crack, wear Insufficient power friction 
Cylinder head crack Insufficient power Temperature changes 

starting ISG-EM 
Stator Crack, wear Function failure Support structure 

relaxation 
rotor Fall off Rotor stuck vibration 

clutch 

Main-EM ISG -EM Gearbox 

Super 
Capacitor 

ICE 
○○○○ 

Fuel tank 

Differential 
Gearbox 
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The components of ISG-engine are indexed in the FMEA. In Table 1, parts FMEA of 
ISG-engine are given. The failure mode of each element is defined as well as its effect. The 
cause is linked with the element states. 
OODBN Model Of  ISG-Engine 

Fig. (5) shows a OODBN for power export function of ISG-engine based on 
structure-function and failure mode effect analysis. The diagnostic model consists of four 
classes, i.e. function class, component system class, component class and observation class. 
The main function of engine is power export. Thus, ‘power export’ is the highest level of 
OODBN. The function states are normal, insufficient power, high idle speed, low idle speed, 
extinction, high fuel consumption. FER affecting ‘power export’ are ‘gas distribution 
function’, ‘fuel supply function’ and the ‘air supply function’.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (5) OODBN for power expert function 
The observation node consists of torque T, revolutions per minute N, power P. The Mean Time to 

Failure (MTTF)of each component can be extracted from historic fault data of hybrid electric 
buses. Then we reason the dynamic fault probability using an iterative procedure realized   

                    
  
 
                                                                                            
 
 
 
 
 
  
 
 

 
       Fig. (6) Fault probability of main nodes      Fig. (7) Accuracy comparison of three methods 
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Fig. (6) shows the fault probabilities of main nodes for individual function state 
‘Insufficient power’ according to the time step. 

From Fig. (6), we can find out that when the function sate of ‘power export’ is ‘insufficient 
power’, the function nodes powerfully influencing on the function are ‘gas distribution’, ‘fuel 
supply’, the component nodes are ‘Piston ring’ and ‘Cylinder head’ successively in 3000 
hours ago. Referring to fault probability and complexity of nodes, the diagnostic order is 
‘Piston ring’, ‘Cylinder head’, ‘valve mechanism’, ‘fuel supply system’, ‘air supply system’. 
According to above method, we construct OODBN for sub-function ‘Gas distribution’ and 
depict dynamic fault probability of relevant nodes. In Fig. (6), valve mechanism was repaired, 
but the normal state probability of node didn’t return to 1, the reason is function degradation of 
other components.  

Expert system is currently the most commonly used method in diagnosis of engine. In 
order to express the superiority of OODBN, we used two methods (BN, OODBN) to diagnose 
the same fault. Referring to a expert system of engine, the results are shown in Fig. (7).   

Because the OODBN diagnosis model takes into account FMEA and dynamic fault 
probability of nodes, it has higher accuracy than BN diagnosis model. Since expert system is 
constructed according to experience of experts, when small number of sample are used, 
OODBN diagnosis model has lower accuracy, compared with expert system. But with the 
number of samples increasing, the accuracy of OODBN model is higher and higher. Addi- 
tionally, expert system makes an accurate judgment difficultly, when there is only a relatively 
small difference between sensitive parameter and the normal value. OODBN diagnosis model 
can attain a better diagnosis. 

Conclusions  
This paper proposes a new approach of fault diagnosis using OODBN for a complex 

electromechanical system. We construct the diagnosis model based on function and fault 
modes analysis in terms of transmission of function flow. The methodology reduces the 
complexity of model and represents the transmission relationships among function. So the 
model provides a convenient way for analyzing fault propagation and relevant failure isolation. 
In particular, the model is hierarchical and dynamical, to depict actual character of nodes. 
Furthermore, the model are reusable and expandable, it can be expanded to hybrid power-train 
system. 
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