

IPLDS: Integrity Protection for Long Data Streams in Wireless Sensor
Networks Using Montgomery Modular Multiplication

Daoli Huang1, a and Changsheng Wan2,b
1Key Lab of Information Network Security of Ministry of Public Security of China, Shanghai, 201204,

China
2Radio Department, Southeast University, Nanjing, Jiangsu, 210096, China

ahuangdaoli@stars.org.cn, bwan.changsheng@163.com

Keywords: Integrity protection, Long data stream, Montgomery modular multiplication.
Abstract. Due to limited energy of sensors, existing data integrity protection mechanisms for wireless
sensor networks (WSNs) typically use a simple hash function for signing and verification. However,
since the computation cost of hash function depends on the length of the input data, this cost may be
high for long data streams. In this paper, we present a secure and efficient data integrity protection
protocol for WSNs named IPLDS, which only uses hash function for processing a short block of data,
and mainly operates on the long data stream using Montgomery modular multiplication, which can
reduce the computation costs of long data streams significantly.

Introduction
Nowadays, WSNs have been widely deployed in military, environmental and other commercial
applications [1]. To transport data between two sensor nodes over a hostile network, integrity
protection modules have been deployed, ensuring that the transmitted data isn’t tampered by the
attackers over the network. Regardless of the technology implemented, as shown in Fig.1, the data
integrity protection scenario includes three parties: the base station (BS), the sender and the receiver
[2] [3]. Before data-transmitting, the sender and the receiver (i.e. two wireless sensor nodes) are
deployed with a shared secret by the BS. During data-sending process, the sender organizes data
readings into elements of fixed size [4], and generates a message authentication codes (MAC) [5] for
each data element, using the shared secret. Then it sends data elements and their MACs to the receiver.
Upon receiving data elements and MACs, the receiver verifies MACs to ensure that the received data
isn’t tampered, using the shared secret.

Fig.1. Data integrity protection overview.

Computation cost is a serious concern for the above data integrity protection system. Due to
limited energy, the sender and the receiver are deeply concerned about the high computation costs
arising from signing and verifying long data streams. Therefore, to increase the lifetime of sensor
nodes, current data integrity protection techniques mainly employ a simple hash function for
generating and verifying MACs, instead of public key cryptography. Unfortunately, in current
schemes, the length of hash function’s input depends on that of the data stream, resulting in high
computation costs and short lifetime for long data streams. Therefore, it is prerequisite to elaborately

International Forum on Mechanical, Control and Automation (IFMCA 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 113

841

design a data integrity protection protocol for sensor networks, in which the length of the hash
function’s input is independent of the length of data streams.

Obviously, designing a data integrity protection protocol for WSNs is a nontrivial task, because the
resource-restrained sensor nodes are not competent to sign, transmit and verify long data streams.
When considering this research issue, we observe that none of the existing cryptographic primitives
can be directly applied to achieve the goals discussed above. This becomes a more severe issue given
the trend that more and more sensor networks are being deployed.

Motivated by this observation, we propose a novel approach to ensure data integrity in WSNs
called IPLDS, which is built on hash function. However, different from current hash function based
mechanisms, IPLDS provides a novel signing algorithm. We don’t use traditional signing algorithm
here due to the following reasons: In current signing algorithm, the hash function operates on the
whole data stream, which is quite time-consuming. On the other hand, observing that MontMM [6] is
much more efficient than hash function, IPLDS aims to mainly perform MontMM operations on the
data stream, and use hash function only for processing a short block of data. By doing so, the
computation costs on both the sender and the receiver can be reduced significantly.

IPLDS: The Protocol
The Single-data-element Scenario
The basic protocol includes three phases, as shown below.
(1) The pre-configuration phase.
During this phase, the BS generates a set of shared secret keys and distributes it to the sender and

the receiver, respectively. And the key distributing channels between the BS and the sender/receiver
should provide integrity/confidentiality/replay-resistance protections, so that the sender and the
receiver can ensure that they get the correct keys and the keys are not leaked to attackers. The key
generating algorithm is shown below.

(1)sk Genkey λ← . This algorithm is run by the BS. It takes as input the security parameter λ , and
output a random prime p and two random shared secret keys 0 1{ , }β β for the sender and the receiver.
In this algorithm, λ is the length of 0 1{ , }β β which determines the security level of IPLDS (Typically,
λ should be at least 80 to achieve a primary security level), and p determines the finite field of data
elements and keys (e.g. 0 1, pZβ β ∈) which should be more than λ -bit.

After the pre-configuration phase, the sender and the receiver hold 0 1{ , , }sk pβ β= for signing and
verifying, respectively.

(2) The signing phase.
During this phase, the sender generates a MAC for the data element pd Z∈ , using the following

signing algorithm.
(,)Gensig d skτ ← . Given pd Z∈ and 0 1{ , }psk Zβ β= ∈ , the sender splits d into fd and ld ,

and computes the MAC for d as 0 11(|| || ||) modf lSHA sID rID d d pτ β β= + , where sID is the
identity of the sender and rID is the identity of the receiver. Note that the length of

0 || || || fsID rID dβ should be less than 448-bit, so that SHA1’s input always forms one block.
Then the sender sends (, , ,)sID rID d τ to the receiver over the hostile network.
(3) The verifying phase.
Upon receiving (, , ,)sID rID d τ from the sender, the receiver (rID) first checks (,)sID rID to

make sure this data is sent from the sender (sID), and should be processed by itself. Then it verifies
(,)d τ using the Gensig algorithm to ensure d isn’t tampered by an attacker.

Advances in Engineering Research, volume 113

842

From the above Gensig algorithm, it can be seen that the length of the hash function’s input is less
than 448-bit (i.e. 1 block), and is independent of the length of d . Moreover, for a long data element
(i.e. 0ld >), this signing algorithm processes ld using MontMM. On the other hand, in pure hash
function based schemes, signing algorithm processes ld using a hash function. Therefore, since
MontMM is much more efficient than hash functions, IPLDS can reduce the signing and verifying
costs significantly.

The Multiple-data-element Scenario
The multiple-data-element scenario is slightly different from the single-data-element scenario, as

shown below:
In the pre-configuration phase, the BS generates a set of keys for the sender and the receiver as

0 1{ , ,..., , }s psk Z pβ β β= ∈ .
In the signing phase, the sender splits the data stream into s elements (1,..., s pd d Z∈), and

generates one signature for multiple data elements as 0
1

1(|| ||) mod
s

i i
i

SHA sID rID d pτ β β
=

= + ∑ .

In the verifying phase, the receiver verifies (,)d τ as 0
1

1(|| ||) mod
s

i i
i

SHA sID rID d pτ β β
=

= + ∑ .

From the above signing/verifying algorithm for the multiple-data-element scenario, it can be seen
that: (i) s data elements share one 1SHA hash function, while each data element consumes only one
MontMM. (ii) the length of hash function’s input is less than 448-bit (i.e. 1 block). On the other hand,
in pure hash function based schemes, each data element consumes one hash function. Since MontMM
is much more efficient than 1SHA , IPLDS can reduce the signing and verifying costs significantly.

Security Analysis
Proof of the security of the single-data-element scenario.
Part 1) The security assumption.
The hash function assumption (HF). We assume that the hash function used in our scheme (i.e.

1SHA) is secure. That is, given sID , rID and fd for randomly-distributed unknown 0β , there is no
t -time algorithm, which has the non-negligible probability ε in computing

01(|| || ||)fSHA sID rID dβ .
Part 2) The adversary model.
To satisfy requirement (1), it must be ensured that no one on the hostile network can tamper the

data. Therefore, the potential adversary is a malicious node on the hostile network. It holds
{ , , }sID rID d . Given { , , , , ' }sID rID d d dτ ≠ , the adversary outputs 'τ . We say that the adversary
wins the game if 0 1' 1(|| || || ') ' modf lSHA sID rID d d pτ β β= + .

Part 3) The security reduction.
This part shows that the security of IPLDS depends on the security assumption (i.e. the HF

assumption defined in part 1), as shown in Theorem 1.
Theorem 1. If there exists an adversary that can forge a signature for the tampered 'd d≠ with the

probability ε , the simulator can solve the HF with the probability ε .
Proof. Given ,sID rID and fd for randomly distributed unknown 0β , the simulator can compute

01(|| || ||)fSHA sID rID dβ in the following three steps:
Step 1) The simulator runs the adversary with the parameter { , , , , , ' , ' }f l f f l lsID rID d d d d d dτ = ≠ .

Let the output be 'jτ . The probability that 0 1' 1(|| || ||) ' modf lSHA sID rID d d pτ β β= + is ε .
Step 2) Since 0 11(|| || ||) modf lSHA sID rID d d pτ β β= + , the simulator computes

11 (')(') modl ld d pβ τ τ −= − − .

Advances in Engineering Research, volume 113

843

Step 3) After getting 1β , the simulator computes
10 11(|| || ||) (')(') modf l l l lSHA sID rID d d d d d pβ τ β τ τ τ −= − = − − − .

From the above proof, it can be seen that the probability (i.e. the advantage) for computing
01(|| || ||)fSHA sID rID dβ is the multiplication of the probabilities of the three steps: 1 1ε ε× × = .

Efficiency Evaluation
All our experiments were conducted on an Intel i7 processor system at 3.40 GHz, using the CentOS
operating system. We investigated the time costs of SHA1 and MontMM using the OPENSSL library
[7] in Table 1 and 2, respectively. To achieve the 80-bit security parameter, we generate an 80-bit
random number as the signing key, which acts as one of the multipliers of MontMM. Therefore, in
table 2, one multiplier of MontMM is 80-bit, while the other has the same length as the modular p .

TABLE 1 Time Costs of SHA1

(Interval: 64-byte=512-bit=one SHA1 block; Unit: 210 sµ−)
 56T 120T 184T 248T 312T 376T

Time costs 56 99 139 181 223 267
56T , 120T , 184T , 248T , 312T and 376T are time costs for 56-byte, 120-byte, 184-byte, 248-byte,

312-byte and 376-byte input data, respectively.

TABLE 2 Time Costs of MontMM
(Interval: 10-byte=80-bit; Unit: 210 sµ−)

 10T 20T 30T 40T 50T 60T
Time costs 3.2 5.0 7.2 10.1 17.8 20.9

10T , 20T , 30T , 40T , 50T and 60T are time costs for 10-byte, 20-byte, 30-byte, 40-byte, 50-byte and
60-byte p (i.e. the modular), respectively.

From table 1, it can be seen that: (i) the time cost of SHA1 for the first data block (i.e. the

first448-bit data) is 256 10 sµ−× . (ii) for each subsequent data block (i.e. 512-bit), the time cost of
SHA1 is around 2(40 50) 10 sµ−− × (e.g. 120 56 99 56 43T T− = − =). That is to say, the time cost for
processing the first block is slightly higher. In addition, performing the linear fitting operation on
table 1 using the software MATLAB, we get the following byte-level equation:

1 0.65 19.6SHAT Len= + , where Len is the data length in bytes, 1SHAT is the time cost of SHA1, and
the unit is 210 sµ− .

From table 2, it can be seen that: (i) for less than 40-byte data blocks, the time cost of MontMM for
each 10-byte data is 2(2 3) 10 sµ−− × . (ii) when the data length is more than 40-byte, the time cost will
increase rapidly (e.g. 50 105T T> and 60 106T T>). Therefore, in the single-data-element scenario, when
the sender splits the long data element d into multiple 80-bit 1,..., s pd d Z∈ for generating short
signatures, it will not increase the total computation cost. Observing this property, we can simply use

10T for computing the time costs of MontMM with different modular lengths, and get the following
byte-level equation: 10* /10 0.32MMT Len T Len= = , where Len is the data length in bytes, MMT is
the time cost of MontMM, and the unit is 210 sµ− .

Combing the results of table 1 and 2, it can be seen that: (1) for short input data (e.g. 10-byte data
blocks), the time cost of MontMM is less than 10% to that of SHA1. For example,

Advances in Engineering Research, volume 113

844

10 56/ 3.2 / 56 5.7% 10%T T = = < . (2) for long input data, the time cost of MontMM is around 50% to
that of SHA1, because 1lim / lim 0.32 / (0.65 19.6) 0.5Len mm SHA LenT T Len Len→∞ →∞= + = (i.e. 50%).

In summary, the computation cost of MontMM is around 5.7%-50% to that of SHA1.

Conclusion
In this paper, we have identified the characteristics of data integrity protection in wireless sensor
networks, and concluded 4 properties that a secure and efficient integrity protection scheme should
satisfy. Moreover, we have proposed a novel protocol named IPLDS. The protocol satisfies a set of
important requirements which have not been addressed by earlier works. The security analysis shows
the proposed approach is feasible for real applications, and the experimental results show that it is
much more efficient than current schemes.

Acknowledgment
This paper is supported by the NSFC (No.61101088,No.71402070), the NSF of jiangsu province
(No.BK20161099), and the Opening Project of Key Lab of Information Network Security of Ministry
of Public Security (No. C16604).

References
[1] Xiangqian Chen, Kia Makki, Kang Yen, and Niki Pissinou, “Sensor Network Security: A Survey”,

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 11, NO. 2, SECOND
QUARTER 2009.

[2] Perrig, A.; Przydatek, B.; Song, D. SIA: Secure Information Aggregation in Sensor Networks. J.
Comput. Secur. 2007, 15, 69-102.

[3] Perrig, A.; Szewczyk, R.; Wen, V.; Culler, D.; Tygar, J.D. SPINS: Security Protocols for Sensor
Networks. In Proceedings of the 7th Annual International Conference on Mobile Computing and
Networking, Rome, Italy, July 2001.

[4] Albath, J.; Madria, S. Practical Algorithm for Data Security (PADS) in Wireless Sensor Networks.
In Proceedings of the 6th ACM International Workshop on Data Engineering for Wireless and
Mobile Access, Beijing, China, June 2007; pp. 9-16.

[5] A. Menezes and et al, "Handbook of Applied Cryptography," CRC press, Dec. 1996.
[6] P.L. Montgomery, “Modular Multiplication without Trial Divi-sion,” Math. Of Computation,

vol.44, no.170, pp.519-521, Apr.1985.
[7] Openssl.org, “openssl-1.0.1e.tar.gz” Feb 2013. [Online]. Available:

http://www.openssl.org/source/

Advances in Engineering Research, volume 113

845

