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Abstract. Due to limited energy of sensors, existing data integrity protection mechanisms for wireless 
sensor networks (WSNs) typically use a simple hash function for signing and verification. However, 
since the computation cost of hash function depends on the length of the input data, this cost may be 
high for long data streams. In this paper, we present a secure and efficient data integrity protection 
protocol for WSNs named IPLDS, which only uses hash function for processing a short block of data, 
and mainly operates on the long data stream using Montgomery modular multiplication, which can 
reduce the computation costs of long data streams significantly. 

Introduction 
Nowadays, WSNs have been widely deployed in military, environmental and other commercial 
applications [1]. To transport data between two sensor nodes over a hostile network, integrity 
protection modules have been deployed, ensuring that the transmitted data isn’t tampered by the 
attackers over the network. Regardless of the technology implemented, as shown in Fig.1, the data 
integrity protection scenario includes three parties: the base station (BS), the sender and the receiver 
[2] [3]. Before data-transmitting, the sender and the receiver (i.e. two wireless sensor nodes) are 
deployed with a shared secret by the BS. During data-sending process, the sender organizes data 
readings into elements of fixed size [4], and generates a message authentication codes (MAC) [5] for 
each data element, using the shared secret. Then it sends data elements and their MACs to the receiver. 
Upon receiving data elements and MACs, the receiver verifies MACs to ensure that the received data 
isn’t tampered, using the shared secret. 

 
Fig.1. Data integrity protection overview. 

Computation cost is a serious concern for the above data integrity protection system. Due to 
limited energy, the sender and the receiver are deeply concerned about the high computation costs 
arising from signing and verifying long data streams. Therefore, to increase the lifetime of sensor 
nodes, current data integrity protection techniques mainly employ a simple hash function for 
generating and verifying MACs, instead of public key cryptography. Unfortunately, in current 
schemes, the length of hash function’s input depends on that of the data stream, resulting in high 
computation costs and short lifetime for long data streams. Therefore, it is prerequisite to elaborately 
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design a data integrity protection protocol for sensor networks, in which the length of the hash 
function’s input is independent of the length of data streams. 

Obviously, designing a data integrity protection protocol for WSNs is a nontrivial task, because the 
resource-restrained sensor nodes are not competent to sign, transmit and verify long data streams. 
When considering this research issue, we observe that none of the existing cryptographic primitives 
can be directly applied to achieve the goals discussed above. This becomes a more severe issue given 
the trend that more and more sensor networks are being deployed. 

Motivated by this observation, we propose a novel approach to ensure data integrity in WSNs 
called IPLDS, which is built on hash function. However, different from current hash function based 
mechanisms, IPLDS provides a novel signing algorithm. We don’t use traditional signing algorithm 
here due to the following reasons: In current signing algorithm, the hash function operates on the 
whole data stream, which is quite time-consuming. On the other hand, observing that MontMM [6] is 
much more efficient than hash function, IPLDS aims to mainly perform MontMM operations on the 
data stream, and use hash function only for processing a short block of data. By doing so, the 
computation costs on both the sender and the receiver can be reduced significantly. 

IPLDS:  The Protocol 
The Single-data-element Scenario 
The basic protocol includes three phases, as shown below. 
(1) The pre-configuration phase. 
During this phase, the BS generates a set of shared secret keys and distributes it to the sender and 

the receiver, respectively. And the key distributing channels between the BS and the sender/receiver 
should provide integrity/confidentiality/replay-resistance protections, so that the sender and the 
receiver can ensure that they get the correct keys and the keys are not leaked to attackers. The key 
generating algorithm is shown below. 

(1 )sk Genkey λ← . This algorithm is run by the BS. It takes as input the security parameter λ , and 
output a random prime p  and two random shared secret keys 0 1{ , }β β  for the sender and the receiver. 
In this algorithm, λ  is the length of 0 1{ , }β β  which determines the security level of IPLDS (Typically, 
λ  should be at least 80 to achieve a primary security level), and p  determines the finite field of data 
elements and keys (e.g. 0 1, pZβ β ∈ ) which should be more than λ -bit. 

After the pre-configuration phase, the sender and the receiver hold 0 1{ , , }sk pβ β=  for signing and 
verifying, respectively. 

(2) The signing phase. 
During this phase, the sender generates a MAC for the data element pd Z∈ , using the following 

signing algorithm. 
( , )Gensig d skτ ← . Given pd Z∈  and 0 1{ , }psk Zβ β= ∈ , the sender splits d  into fd  and ld , 

and computes the MAC for d  as 0 11( || || || ) modf lSHA sID rID d d pτ β β= + , where sID  is the 
identity of the sender and rID  is the identity of the receiver. Note that the length of 

0 || || || fsID rID dβ  should be less than 448-bit, so that SHA1’s input always forms one block. 
Then the sender sends ( , , , )sID rID d τ  to the receiver over the hostile network. 
(3) The verifying phase. 
Upon receiving ( , , , )sID rID d τ  from the sender, the receiver ( rID ) first checks ( , )sID rID  to 

make sure this data is sent from the sender ( sID ), and should be processed by itself. Then it verifies 
( , )d τ  using the Gensig  algorithm to ensure d  isn’t tampered by an attacker. 
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From the above Gensig  algorithm, it can be seen that the length of the hash function’s input is less 
than 448-bit (i.e. 1 block), and is independent of the length of d . Moreover, for a long data element 
(i.e. 0ld > ), this signing algorithm processes ld  using MontMM. On the other hand, in pure hash 
function based schemes, signing algorithm processes ld  using a hash function. Therefore, since 
MontMM is much more efficient than hash functions, IPLDS can reduce the signing and verifying 
costs significantly. 

The Multiple-data-element Scenario 
The multiple-data-element scenario is slightly different from the single-data-element scenario, as 

shown below: 
In the pre-configuration phase, the BS generates a set of keys for the sender and the receiver as 

0 1{ , ,..., , }s psk Z pβ β β= ∈ . 
In the signing phase, the sender splits the data stream into s  elements ( 1,..., s pd d Z∈ ), and 

generates one signature for multiple data elements as 0
1

1( || || ) mod
s

i i
i

SHA sID rID d pτ β β
=

= + ∑ . 

In the verifying phase, the receiver verifies ( , )d τ  as 0
1

1( || || ) mod
s

i i
i

SHA sID rID d pτ β β
=

= + ∑ . 

From the above signing/verifying algorithm for the multiple-data-element scenario, it can be seen 
that: (i) s  data elements share one 1SHA  hash function, while each data element consumes only one 
MontMM. (ii) the length of hash function’s input is less than 448-bit (i.e. 1 block). On the other hand, 
in pure hash function based schemes, each data element consumes one hash function. Since MontMM 
is much more efficient than 1SHA , IPLDS can reduce the signing and verifying costs significantly. 

Security Analysis 
Proof of the security of the single-data-element scenario. 
Part 1) The security assumption. 
The hash function assumption (HF). We assume that the hash function used in our scheme (i.e. 

1SHA ) is secure. That is, given sID , rID  and fd  for randomly-distributed unknown 0β , there is no 
t -time algorithm, which has the non-negligible probability ε  in computing 

01( || || || )fSHA sID rID dβ . 
Part 2) The adversary model. 
To satisfy requirement (1), it must be ensured that no one on the hostile network can tamper the 

data. Therefore, the potential adversary is a malicious node on the hostile network. It holds 
{ , , }sID rID d . Given { , , , , ' }sID rID d d dτ ≠ , the adversary outputs 'τ . We say that the adversary 
wins the game if 0 1' 1( || || || ') ' modf lSHA sID rID d d pτ β β= + . 

Part 3) The security reduction. 
This part shows that the security of IPLDS depends on the security assumption (i.e. the HF 

assumption defined in part 1), as shown in Theorem 1. 
Theorem 1. If there exists an adversary that can forge a signature for the tampered 'd d≠  with the 

probability ε , the simulator can solve the HF with the probability ε . 
Proof. Given ,sID rID  and fd   for randomly distributed unknown 0β , the simulator can compute 

01( || || || )fSHA sID rID dβ  in the following three steps: 
Step 1) The simulator runs the adversary with the parameter { , , , , , ' , ' }f l f f l lsID rID d d d d d dτ = ≠ . 

Let the output be 'jτ . The probability that 0 1' 1( || || || ) ' modf lSHA sID rID d d pτ β β= +  is ε .  
Step 2) Since 0 11( || || || ) modf lSHA sID rID d d pτ β β= + , the simulator computes 

11 ( ' )( ' ) modl ld d pβ τ τ −= − − . 
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Step 3) After getting 1β , the simulator computes 
10 11( || || || ) ( ' )( ' ) modf l l l lSHA sID rID d d d d d pβ τ β τ τ τ −= − = − − − . 

From the above proof, it can be seen that the probability (i.e. the advantage) for computing 
01( || || || )fSHA sID rID dβ  is the multiplication of the probabilities of the three steps: 1 1ε ε× × = . 

Efficiency Evaluation 
All our experiments were conducted on an Intel i7 processor system at 3.40 GHz, using the CentOS 
operating system. We investigated the time costs of SHA1 and MontMM using the OPENSSL library 
[7] in Table 1 and 2, respectively. To achieve the 80-bit security parameter, we generate an 80-bit 
random number as the signing key, which acts as one of the multipliers of MontMM. Therefore, in 
table 2, one multiplier of MontMM is 80-bit, while the other has the same length as the modular p . 

 
TABLE 1 Time Costs of SHA1 

(Interval: 64-byte=512-bit=one SHA1 block; Unit: 210 sµ− ) 
 56T  120T  184T  248T  312T  376T  

Time costs 56 99 139 181 223 267 
56T , 120T , 184T , 248T , 312T  and 376T  are time costs for 56-byte, 120-byte, 184-byte, 248-byte, 

312-byte and 376-byte input data, respectively. 
 

TABLE 2 Time Costs of MontMM 
(Interval: 10-byte=80-bit; Unit: 210 sµ− ) 

 10T  20T  30T  40T  50T  60T  
Time costs  3.2 5.0 7.2 10.1 17.8 20.9 

10T , 20T , 30T , 40T , 50T  and 60T  are time costs for 10-byte, 20-byte, 30-byte, 40-byte, 50-byte and 
60-byte p  (i.e. the modular), respectively. 

 
From table 1, it can be seen that: (i) the time cost of SHA1 for the first data block (i.e. the 

first448-bit data) is 256 10 sµ−× . (ii) for each subsequent data block (i.e. 512-bit), the time cost of 
SHA1 is around 2(40 50) 10 sµ−− ×  (e.g. 120 56 99 56 43T T− = − = ). That is to say, the time cost for 
processing the first block is slightly higher. In addition, performing the linear fitting operation on 
table 1 using the software MATLAB, we get the following byte-level equation: 

1 0.65 19.6SHAT Len= + , where Len  is the data length in bytes, 1SHAT  is the time cost of SHA1, and 
the unit is 210 sµ− . 

From table 2, it can be seen that: (i) for less than 40-byte data blocks, the time cost of MontMM for 
each 10-byte data is 2(2 3) 10 sµ−− × . (ii) when the data length is more than 40-byte, the time cost will 
increase rapidly (e.g. 50 105T T>  and 60 106T T> ). Therefore, in the single-data-element scenario, when 
the sender splits the long data element d  into multiple 80-bit 1,..., s pd d Z∈  for generating short 
signatures, it will not increase the total computation cost. Observing this property, we can simply use 

10T  for computing the time costs of MontMM with different modular lengths, and get the following 
byte-level equation: 10* /10 0.32MMT Len T Len= = , where Len  is the data length in bytes, MMT  is 
the time cost of MontMM, and the unit is 210 sµ− . 

Combing the results of table 1 and 2, it can be seen that: (1) for short input data (e.g. 10-byte data 
blocks), the time cost of MontMM is less than 10% to that of SHA1. For example, 
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10 56/ 3.2 / 56 5.7% 10%T T = = < . (2) for long input data, the time cost of MontMM is around 50% to 
that of SHA1, because 1lim / lim 0.32 / (0.65 19.6) 0.5Len mm SHA LenT T Len Len→∞ →∞= + =  (i.e. 50%).  

In summary, the computation cost of MontMM is around 5.7%-50% to that of SHA1. 

Conclusion 
In this paper, we have identified the characteristics of data integrity protection in wireless sensor 
networks, and concluded 4 properties that a secure and efficient integrity protection scheme should 
satisfy. Moreover, we have proposed a novel protocol named IPLDS. The protocol satisfies a set of 
important requirements which have not been addressed by earlier works. The security analysis shows 
the proposed approach is feasible for real applications, and the experimental results show that it is 
much more efficient than current schemes. 
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