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Abstract. Knowledge of the risk-neutral distribution of the cumulative return with respect to the 

model used, is needed in European option pricing. Duan, Gauthier, Simonato and Sasseville (DGSS) 

provided an analytic approximation model for the case where an EGARCH or a GJR-GARCH 

specification is used to describe the asset price dynamics. The DGSS model requires the risk-neutral 

pricing methodology of the Black-Scholes-Merton (BSM) option pricing model. The Global 

Financial Crisis (GFC) exposed the shortcomings of the risk-neutral option pricing methodology. In 

this paper, the DGSS option pricing models are extended to incorporate the Piterbarg option pricing 

methodology. 
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1 Introduction 

Knowledge of the risk-neutral distribution of the cumulative return with respect to the model used, 

is needed in European option pricing. GARCH models are known to provide superior performances 

when calculating asset returns. There is a plethora of GARCH (Bollerslev (1986) [2], Glosten el al. 

(1993) [4], and Nelson (1991) [6]) models and unfortunately their risk-neutral distributions are not 

known in all cases. Duan, Gauthier, Simonato and Sasseville (2006) [3] (DGSS) provided an analytic 

approximation model for the case where an EGARCH or a GJR-GARCH specification is used to 

describe the asset price dynamics. The DGSS model requires the risk-neutral pricing methodology of 

the Black-Scholes-Merton (BSM) option pricing model (Black and Scholes (1973) [1] and Merton 

(1973) [5]). 

The Global Financial Crisis (GFC) of 2008 had a significant impact on the financial industry, and 

on the pricing of derivatives. Before the crisis, the well-known Black-Scholes-Merton (BSM) 

framework for the pricing of derivatives dictated that the price of a derivative tV  is equal to the future 

expected payoff of the derivative, under the risk-neutral measure, discounted at the risk-free rate, i.e. 

 

(1)rT

t T tQ
V e E V    F  

 

where TV  is the payoff of the derivative at maturity T , r  is the constant risk-free interest rate, and the 

expectation is under the risk-neutral measure ,Q  at which the underlying asset price process drifts at 

the risk-free interest rate, and has a filtration F set at time .t  GARCH processes, which intrinsically 

model the conditional volatility of an asset, were transformed from a real-world measure P into the 

risk-neutral measure of the BSM framework. 

 Since the GFC the pricing of derivatives has changed significantly. Due to the default of large 

banks and corporations such as Lehman Brothers, new frameworks for the pricing of derivatives were 

constructed, one such framework is given by Piterbarg (2010) [7]. The GFC showed that even large 

corporations could default, which emphasised the need to include procedures in the pricing of 
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derivatives to account for counter-party risk. Piterbarg therefore included the posting of collateral in 

the pricing of derivatives, which additionally requires that the assumption of a risk-free rate be 

replaced by multiple interest rates.  Hence, the GARCH processes which were adapted to the 

risk-neutral measure need to be redefined to the new measure of the Piterbarg framework.  

 In this paper asymmetric GARCH processes under consideration are transformed to be 

consistent with the Piterbarg methodology, and used to price options in the Piterbarg framework.  The 

Piterbarg methodology entails three unique interest rates to price options. Additionally, the price of 

options under this methodology depend on collateral payments throughout the lifetime of the option. 

The risk-neutral measure is replaced by a measure in which the underlying asset drifts at the rate 

earned on a repurchase agreement, and not the risk-free interest rate. The risk-neutral asset price 

return dynamics under the risk-neutral measure provided by DGSS do not hold, and a new asset price 

return dynamic is derived in order to price options using GARCH processes to model the underlying 

assets returns in the Piterbarg methodology. 

2 The Piterbarg framework 

The Piterbarg framework is a modern extension to the Black-Scholes-Merton framework which 

relaxes the assumption of a risk-free interest rate and implements three unique deterministic rates, 

namely a unsecured funding rate Fr at which the derivative is funded, the collateral rate Cr  earned on 

the posted collateral, and the rate earned on a repurchase agreement in which the hedging position is 

entered in order to gain the interest rate given by .Rr  The measure used in the Piterbarg framework 

will be referred to as the 
Rr

Q measure, and is the measure under which no arbitrage exists when 

entering the replicating portfolio into a repurchase agreement. In general we have that 

.C R Fr r r  The price, tV at time t  of a derivative is then given by 
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which, by applying the Feynman-Kac theorem, can be rewritten as 
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where ( )C s equals the collateral amount paid at time [ , ]s t T  and the expectation is taken under the 

Rr
Q measure at which the underlying asset grows at the rate Rr  earned on a repurchase agreement. The 

price of a derivative in the Piterbarg framework depends on the collateral amount paid at each point in 

time. 

3 GARCH processes in the Piterbarg measure 

Consider a discrete time economy and let tS  be the asset price at time .t  Under the real world 

measure P  the one period rate of return is assumed to be conditionally lognormally distributed, so 

that 
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where t  has zero mean and conditional variance th  under measure P  and Rr  is the constant one 

period repurchase rate of return, and  is the constant unit risk premium. We assume that t  follows a 

GARCH(p,q) process under .P  Using alternative specifications for th will not change the basic 

option pricing results as long as conditional normality remains in place. The Piterbarg measure 

Rr
Q under which the underlying asset price process drifts at the repurchase rate, needs to satisfy 
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and 
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almost surely with respect to measure .P  This ensures that the one period return of the asset return is 

equal to the one period return under Piterbarg's 
Rr

Q measure, and we require the conditional variances 

under the two measures to be equal, because one can observe and therefore estimate the conditional 

variance under .P  

We denote by ( )tU C and tC  the utility function and the aggregate consumption at time ,t  

respectively. The parameter  denotes the impatience factor. The standard expected utility 

maximisation argument leads to the following Euler equation: 
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Let t tY v Z   where v  is the constant mean and tZ  is distributed normally with mean zero and 

constant variance under .P  We define the measure 
Rr

Q  by 
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The change of measure allows equation (4) to hold true, while the variance of the returns of the 
Rr

Q  

measure and the P measure are equivalent. This implies that ,t t th     where t is a 
Rr

Q -normal 

random variable. Upon substitution into the conditional variance equation, it results in the following 

theorem. 

 

Theorem 3.1 Under the  
Rr

Q measure, the log-returns of the underlying asset are given by 
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where 

 

1 ~ (0, ), (10)t t tN h F  
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and 
th  is given by any adaptation of a GARCH process, such as the EGARCH or GJR-GARCH 

processes. 

4 GJR-GARCH and EGARCH in the Piterbarg framework 

Having defined the log-return processes of an asset under the Piterbarg 
Rr

Q  measure by equation (9), 

we can write the return dynamics of an asset in the Piterbarg 
Rr

Q  measure as 
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where   : 1,2,...t t  is a sequence of standard normal variables, and the GJR-GARCH and 

EGARCH processes are chosen to model the conditional volatility of the underlying, which, under the 

Rr
Q  measure, are given by 
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for the GJR-GARCH process, and 
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for the EGARCH process, respectively. 

 The GARCH processes under the 
Rr

Q measure are used in a Monte-Carlo simulation to find 

the underlying asset price at the maturity of the option, ,T and are found recursively by 
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The asset price is then used to find the price of the option in the Piterbarg framework, which is found 

through application of equations (2) and (3). 

5 Results 

The GJR-GARCH and EGARCH processes are implemented in the Piterbarg framework to price 

European options on the FTSE/JSE Top 40 index (.TOPI). The option is a one month option, and the 

different interest rates are assumed to be constant and are given by 0.05,Cr  0.1,Rr   and 0.2.Fr   

The option prices are found for the scenarios in which zero- and full collateral is continuously posted 

throughout the lifetime of the option. The time series data of the FTSE/JSE Top 40 index consists of 

closing prices of all  trading dates from the 1st of January 2010 until the 10th of June, 2015. The option 

prices are converted to the Piterbarg implied volatility for comparison purposes.  

 Fig. 1 displays the implied volatility for fully collateralised options. The characteristic implied 

volatility skews found in the market are evident and the different models produce similar results. 

However, the EGARCH calibrated option prices tend to have a flatter implied volatility skew when  

compared to the GJR-GARCH calibrated implied volatility skew.  

 In Fig. 2 the implied volatility of options for which zero collateral is posted are shown. Again, 

the implied volatility skew of the EGARCH calibrated option prices is flatter than the GJR-GARCH 
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calibrated implied volatility skew. The simulations show that the option for which zero collateral is 

posted is cheaper than the option for which full collateral is posted continuously. This, in turn, is 

consistent with the Piterbarg methodology. 

Figure1: The implied volatility of the GJR-GARCH and EGARCH calibrated option prices in the 

Piterbarg framework, for one month options on the .TOPI, for the case where the trade is fully 

collateralised continuously. 

Figure2:The implied volatility of the GJR-GARCH and EGARCH calibrated option prices in the 

Piterbarg framework, for one month options on the .TOPI, for the case where no collateral is posted 

throughout the lifetime of the option. 

6 Conclusion 

In this paper the standard GARCH processes were transformed to be consistent with the 
Rr

Q measure 

of the Piterbarg framework. Both the GJR-GARCH and the EGARCH processes where used to 

simulate the asset returns of the FTSE/JSE Top 40 index, which, through a Monte-Carlo simulation, 

were used to price one month options on the index. These option prices were converted to the implied 

volatility of the Piterbarg framework. The EGARCH process generally produces implied volatility 

skews which are flatter in shape than the GJR-GARCH calibrated volatility skews. Both the 

EGARCH and the GJR-GARCH models keep the characteristic volatility skew which can be 

observed in the markets. 
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