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Abstract. With the application and development of high-throughput sequencing technology, the 
detection methods of structural variants based on sequencing have emerged. However, since the 
high-throughput sequencing reads is relatively short compared to the previous sequencing reads, it 
is difficult to detect long insertion. Although assembly-based approach can solve long insertion, the 
computational resources used for assembly are too complex, resulting in poor results of assembly 
and final detection. To this end, ISALins was proposed, firstly the initial results of three different 
detection tools were merged; then high quality soft-cilpped reads and unmapped reads which is the 
set of most probable reads containing information of insertion were analyzed and extracted around 
the initial suspect SV breakpoints; finally these reads were assembled using assembly tool based on 
De Bruijn Graphs. By experimenting on both simulated and real data, we found that the method was 
superior to the single tool in detecting precision and sensitivity. Compared with the direct 
combination of call results of multiple tools, in ensuring detection sensitivity of the premise, 
ISALins significantly improved the detection accuracy. 

Introduction 
In recent years, high-throughput sequencing (HTS) has become an important technology for the 

determination of genomic variation. Although nucleotide level variants such as SNPs and indels are 
numerous, large structural variants, such as deletions, insertion, duplications and inversions, affect 
more sequence, and as much as 15% of the human genome falls into copy number variable regions 
[1]. A universal method for detecting variations is resequencing, i.e. to determine the difference of a 
donor individual with respect to a reference genome sequence. In the past few years, with the 
continuous development of sequencing technology and the sequencing of lowering cost, SV 
detection method based on sequencing has rapidly developed, it is mainly divided into the following 
four categories: Paired-end mapping, Split read, Read depth, Assembly. Insertions, for example, are 
detected when the distance between mapped paired-end reads is significantly longer than the 
average size distribution of other mapped read pairs from the same mate-pair sequencing library. 
Tools that use this method include BreakDancer [2] and VariationHunter [3]. Other tools such as 
Pindel [4] apply a split-mapping approach where one end of a pair of sequence reads is mapped 
uniquely to the genome and acts as an anchor, while the other end is mapped so as to detect the 
insertion SV breakpoint. A major drawback of these methods is the requirement that insertion 
should be completely contained within a read and correctly identified during the initial read 
mapping step. This method is effective for small insert detection, but is problematic for detecting 
longer than the read length. In the long insertion case, reads that support this mutation generally 
contain too few bases that can match to the reference gene and lead to failure; or the supporting 
reads may have one end map well to the reference genome but the rest of the bases after the 
insertion get trimmed or soft-clipped by the NGS aligner [5]. De novo assembly has been used to 
call insertion larger than the read length. For example, GATK HaplotypeCaller, Platypus [7] and 
Scalpel [8] employ localized or micro-assembly strategies and FermiKit [8] performs whole 
genome assembly for variant detection. Even though de novo assembly potentially can identify 
insertions of any size, the high computational cost and memory requirements have made it difficult 
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to use in practice. For these reasons we developed ISALins, many studies have shown that genetic 
structural variants are associated with human performance, including cancer, mental disorders, 
metabolic disorders, and a variety of incurable diseases, such as the heterozygous variant of gene 
NRXN1 associated with autism and schizophrenia; Congenital heart defects is closely related to the 
lack of 22q11.2 area [9]. Second-generation sequencing technology is an important step forward in 
our understanding of the human genetic structure and explains the relationship between genetic 
variation and disease. This understanding depends on our ability to accurately detect differences 
between individual and reference genes. Therefore, the precision and sensitivity of structural 
variation detection within the genome-wide range is of great significance. 

Method 
ISALins uses multiple SV-detection methods and tools to find a high-confidence and precise SV 

breakpoint callset. The novelty of ISALins lies in the combination of the following key ideas: calls 
reported by multiple methods are generally better quality and the filter of high quality soft-clipped 
reads and that local assembly can be used to call the long insertion. ISALins proceeds in the 
following steps (Fig. 1): 

Input reads
(bwa-mem)

High quality soft-
clipped reads

Breakdancer

Merge insertion breakpoint

PindelRetroSeq

Extract reads 
near breakpoint

IDBA_UD
(Contigs)

Blat
(bam)
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(SV vcf)

Unmapped reads

 
Fig.1. The workflow of ISALins 

Insert site detection 
We assume that the locations of the insertions are provided to us as input to the assembly method. 

There are two main methods for determining these locations: 
1. Using existing SVs frameworks: Many efficient tools have been developed in past few years 

to detect the SVs efficiently and accurately [10][11]. We can use the output of their methods as the 
input to our algorithm. 

2. Clustering the OEA Reads: OEA reads are indicator of unique insertion, we will cluster the 
OEA reads and pick the cluster set which has the most number of OEA reads. Clustering the OEA 
reads will increase our confidence level if an insertion has occurred in the donor genome. 
Furthermore, it will reduce the estimated number of unique insertions in the donor genome, which 
follows the maximum parsimony [12]. 

Advances in Engineering Research, volume 118

832



 

Different detection methods of structural variation have been developed, but the precision and 
sensitivity of each method to different structural variations are different, especially for inserts, and 
in order to obtain more suspicious breakpoints to achieve ultimate maximization of detection 
sensitivity and to ensure accuracy, this paper will use a variety of detection methods to get the initial 
collection of insertion breakpoint. In this paper, we use three efficient tools: BreakDancer, Pindel 
and RetroSeq. Firstly, we filter the detection results of each tool, that is, we extract the SV type, 
coordinates and size in the output of each detection tool, and then merge the detection set of the 
three tools through the SV type and chromosome coordinates to obtain a non-redundant SV set, that 
is, a collection of suspicious variant breakpoints. For example, all insertion calls from BreakDancer, 
Pindel, and RetroSeq were compared; if the coordinate spans from a BreakDancer insrtion call and 
Pindel insertion call overlapped, then the calls were merged. The insertion calls from RetroSeq were 
then compared to the merged BreakDancer and Pindel set to identify additional insertions not 
detected by either BreakDancer or Pindel.  

Filter of reads for assembly 
Because for long insertion, its the information of base can only be distributed in the OEA and 

Orphan, so we here mainly to screen the two kind of reads, as shown in Fig 2.  
By mapping the fastq file of individual gene to the reference gene, we obtain the SAM file which 

saves the result of mapping. We classify reads into the follow four categories based on the 
information in SAM file: 

• One-end anchored (OEA): Read-pairs in which one mate maps to the reference genome, and 
one does not. Soft-cilpped reads is a kind of OEA. 

• Orphan: Read-pairs in which neither mate maps to the reference. 
• Concordant: Read-pairs in which both reads map to the reference, and the distance between 

their mapped locations is within the range [m-2*v, m+2*v], m is the insert size, v is the standard 
deviation. Furthermore, one mate should map in the forward direction, and one in the reverse. 

• Discordant: Read-pairs in which both reads map to the reference, but are not concordant. 
Since sequencing reads is likely to have erroneous base or artificial data, we must filter 

soft-clipped reads to improve detection accuracy. Soft-clipped reads are coded as ‘S’ in their 
CIGAR string [13] in the BAM file. Among them, high quality soft-clipped reads are defined with 
the following criteria: (i) read mapping quality which denoted by MAPQ in BAM greater than a 
user-specified value (in practice, MAPQ ≥ 1); (ii) fraction of the soft-clipping part (in practice, 
≥20 % of read length);(iii) proportion of high sequencing quality (in practice, minimum Q20) of 
soft-clipped bases (in practice, ≥80 %).With those filters, we try to exclude the reads that are 
soft-clipped due to bad sequencing quality or ambiguous alignment and only keep the reads with a 
long soft-clipped part that may suggest the presence of an insertion within it. 
 

 
Fig.2. reads contain insertion 

Local assembly and contig alignments 
In the range of 1000 bp upstream and downstream of each predicted insertion breakpoint, OEA 

and Orphan were extracted from the BAM files, formatted to FASTA format with interleaved read 
pairs, and assembled by IDBA-UD [14] and the minimal contig length to be at least one base longer 
than the read length. Each assembled contig was then aligned against the reference genome by 
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applying a similar alignment procedure of short reads: BWA-MEM was used to carry out the initial 
alignment and soft-clipped contigs with breakpoint evidence were were re-aligned with BLAT [15] 
to refine their CIGAR string. 

Insertion dectect  
After soft-clipped read realignment and assembly, ISALins produced a BAM files which is the 

alignment of assembled contigs after BWA and BLAT tiered mapping. The BAM files were then 
sorted and indexed and passed as input to the haplotype-based variant caller, FreeBayes [16], for 
insertion detection. 

Test results 
Simulate data. 
The chromosome 21 of the human reference genome hg19 was used as a reference gene. First we 

generated a reference file containing the SV information, which contains the SV type, location and 
length, for the subsequent verification. 1000 insertions were chosen where the inserted positions 
were not overlapping with each other. The size of these inserts range from 50bp to 1kb, the inserted 
sequences were randomly generated, and insertions were added to the chromosomes using svsim. 
We used art_illumina to simulate sequencing reads of fastq file from the generated target genome, 
by setting the read length to 100bp, insert size to 500, standard deviation to 50,and a coverage of 
10X, 30X, and 50X, respectively. The results are shown in Table 1. From Table 1 we can see that 
ISALins can maintain stable performance regardless of low or high coverage data sets. For 10X, 
30X, 50X coverage data, ISALins accuracy can reach almost 100%, while the accuracy is higher 
than the single tool. 

Table 1.insertion accuracy summary for different coverage on simulate data 
Coverage Tool Call Benchmark True Positives Precision Sensitivity 

 
 

10X 

Pindel 257  
 

1000 

37 0.16 0.037 

Breakdancer 149 61 0.409 0.061 

Restrseq 201 156 0.776 0.156 

ISALins 151 151 1.000 0.151 

 
 

30X 

Pindel 708  
 

1000 

49 0.079 0.049 

Breakdancer 217 77 0.355 0.077 

Restrseq 431 399 0.926 0.399 

ISALins 430 430 1.000 0.430 

 
 

50X 

Pindel 1169  
 

1000 

68 0.069 0.068 

Breakdancer 243 80 0.329 0.080 

Restrseq 508 469 0.923 0.469 

ISALins 470 470 1.000 0.470 

Real data. 
Human NITS standard NA12878 was used to validate ISALins on whole genome sequencing 

(WGS) data. Raw fastq files were obtained from European Nucleotide Archives with the accession 
number ERA172924.Paired-end reads were aligned to the hg19 human reference using BWA-MEM 
with default parameters. We split the BAM file containing all reads by chromosome. Each smaller 
BAM file contains all mapped reads from only one chromosome and all unmapped reads without 
any mapping information in a large BAM file. All programs were called for each individual BAM 
file separately and predictions of each chromosome were merged into one final output file. The 
large novel sequence insertion reference call set was obtained by extracting Cortex identified 
NA12878 sites from the 1000 Genomes Pilot 1 novel sequences file. The results are shown in Table 
2. From Table 1 we can see that ISALins achieved highest sensitivity and precision, which were 
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92.3% and 45.7% respectively, comparing to all the individual tools analyzed. 
 

Table 2.insertion accuracy summary for 50X coverage on real data 
Coverage Tool Call Benchmark True Positives Precision Sensitivity 

 
 

50X 

Pindel 2791  
 

105 

28 0.010 0.267 

Breakdancer 0 0 0 0 

RetroSeq 60 43 0.717 0.410 

ISALins 52 48 0.923 0.457 

Conclusion 
ISALins significantly improves the accuracy of calling long insertion by integrating multiple 

tools and the analysis of high quality soft-clipped reads compared with the state of the art tools. We 
consider ISALins as a proof of concept of the effectiveness of using an ensemble approach for 
calling SVs. The approach is not limited to only using the aforementioned tools, it can be easily 
adapted to use additional or even a different set of tools. 
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