
A preprocessing strategy of RDF data query based on relational
database

Yuanyuan Chen1, a
1Nanchang Institute of Science and Technology, 330108

a262488739@qq.com

Keywords: Resource description framework; Relational database; Query optimization;
preprocessing; LUMB data set

Abstract. To improve the efficiency of the query on the data of resource description framework
(RDF), the method of storage and management of the data at home and abroad is studied. According
to the characteristic of the data that the number of subjects and objects is large and the number of
attributes is small, a preprocessing of the storage of the data based on the relational database is
proposed. The query first judge the property, and then performed, thus the efficiency of the
implementation of the query is improved. Finally, the data was generated uses the LUMB data set,
and then, the designed query is executed on it. The experimental results verify the validity of the
method.

Introduction
The semantic web was proposed by Tim Berners-Lee, the father of the world wide web, in

1998[1], its key point is to build a centric network of data,so the computer can understand the data
which in the document and its semantic relations,in order to query the data on the Internet to get the
formatted answer. The data of resource description framework (RDF) is a data storage format which
designed to implement the Semantic Web. It is usually descrided by a three tuple (subject, property,
object).For example, a film named "Terminator Genisys" directed by Alan in 2015,which actor
Clarke take part in, using RDF form can be expressed as:

(id1,hasName, “Terminator Genisys”),(id1,producedInYear, “2015”),
(id1,directedBy,id2),(id1,hasCasting,id3),(id2,hasName, “Alan”),and so on.
It can be seem from this example, RDF form is very flexible and generic, which can decompose

and storage all information.
RDF query language and data acquisition protocol (SPARQL) [3] is the official language of the

RDF data query, which can support a number of operations such as merge and connection.
This paper mainly includes three aspects: first, research and analyze the advantages and

disadvantages of the existing RDF data storage management methods. Second, the property table is
designed and built in the relational. Third, the data set is used to verify the preprocessing strategy.

Current situation and analysis of domestic and international research
RDF data is widely used in multiple platforms, although the tuples data can semantic, which

very convenient, however it also has some disadvantages. First of all, as the number of tuples
becomes very large, as the data table increases very fast; second, for the complex queries, there will
be a large number of connection operation in the execution process, it will greatly reduce the
efficiency of the query.

In order to improve the efficiency of storage and query, researchers have proposed a lot of
methods to store RDF data. In the early Jena[4] used the attribute table to store RDF data, the
attribute table can solve the problems in the tuple storage, because of lots of the attributes organized
together, reduced the query connection operations, eliminated the tuple storage in self join
operations and improved the efficiency of the query. However the attribute table also have some
shortcomings, first of all, it is not possible that put all attribute which the query needed into a table,
therefore, there are still some connection operation, and existed the merge operation; secondly,

2nd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 118

854

because the data of RDF is not structured, so there may be a lot of null value in the property table
and a lot of storage space may be wasted.

In order to overcome the shortcomings in the attribute table, Professor Abadi proposed a
vertical segmentation method which is very powerful [5]. This method will be classified according to
the attribute tuples, independent tuples in a table for the N attribute, each table includes the two
attributes of the subject and object, then the establishment of the table is stored in the column based
on the C-Store database, and through the combination of pre-existing paths, the query operation
connection between tuples are optimized to improve the efficiency of RDF data query. This method
has many advantages:

1)It supports multiple values.
2)It supports heterogeneous data.
3)It does not need to design complex clustering algorithms.
There is no need for merge operations because of all the values of attributes are placed in a

table.
In our experiments, when we stored the data in a relational database, the efficiency of vertical

segmentation method and the attribute table in the same order of magnitude increased slightly;
when we used the column Monet-db database management system, we has obtained a very good
effect because the storage form of thought and column database vertical partition is very fit. Be
relative to other queries, the attribute table be more than ten times faster. Although the vertical
segmentation method greatly improves the query efficiency, but it is not suitable in some cases,
such as a query need to cross multiple attributes, you need to connect to multiple tables.

It is different form the vertical segmentation method , the attribute table be insisted on using
three tuple, and aslo designed and implemented many methods to solve the problem of query
efficiency, Professor Weiss of University Zurich for a class of queries: "when the required query
attribute" is not specified, the vertical segmentation method is not appropriate, because it requires
access to all of the N attribute table to get the answer, so he put forward the Hexastore[6] method,
which is six times of the index method, this method build all indexed for the subject, object and
attribute of all 6 arrangement forms, thus can improve the query efficiency, but its drawback is that
the data storage space is expanded by about 5 times.

Thomas Neumann, Professor of German Marx Planck Institute of information also proposed a
RDF-3X[7] storage architecture, first this architecture sorted the original three tuple, and the data in
the same column are found to be very small. Therefore, this paper proposes a compression idea, that
is, only the first data, the subsequent data is stored by the difference between the data and the first
data. By this method, the amount of data reduced greatly, and then established the index, in RDF-3x
the same as SPARQL analysis was studied, and put forward the related model, and several methods
are used to optimize the query process, which improved the efficiency of the query and achieved
great success. RDF-3X method also has some shortcomings, for the logic of complex queries, the
efficiency is relatively low.

professor Zou Lei who is from China's Peking University pointed out that in recent years, the
original system did not consider the use of wildcards in the query when it is designed, so he
proposed a gStore[8] storage method based on graph to store RDF data. This method will store the
RDF data in the form of map, then put the character encoding for each vertex, the original string
used a hash function mapping for the 0 and 1 encoding, also encoded the wildcards, then established
a S-tree in each encoding vertex as inputing, and generated the connection between nodes of each
layer S-tree which between each vertex attributes, also built VS-tree, then optimized the querying
process of the VS-tree then the establishment of VS*-tree, through this method, it can support
Wildcard Queries, and improve the efficiency of query execution . The gStore method is very
suitable for the star structure because it based on graph, so, the efficiency is very high, and support
Wildcard Queries, but for complex data structure, the query efficiency will slow down.

In the recent research results, H2RDF+[9] provided the use of multi user interface to interact with
different databases in the cloud computing environment. The literature [10] pointed out that
different storage methods are suitable for a specific query type, and puted forward the system which

Advances in Engineering Research, volume 118

855

Workload sensitive adaptation. That is, according to the changes in the query, the dynamic
adjustment of storage, in order to provide better service, the corresponding system is being
developed in [10].

We compared the methods of storage and query in the above methods, get some inspiration that
the vertical segmentation method can be used for data sets with less attribute values, and it can have
a better query efficiency, however, when the value of the data set is very large, it is not available.
Hexastore method have a high efficiency, but the storage space is greatly increases, so was Rarely
used.Rdf-3x is still Current research hotspots ,because of its high compression rate and high
efficiency, the author also put forward x-rdf-3x[11],which supported more online updates. The
g-store method is higher the average query efficiency, but because it is based on a graph structure to
build, so there are multiple penetration queries for a node, its efficiency compared with other
methods, will be relatively much slower. In summary, now for the storage of RDF data is not a for
the case of "master key", the research task is still a long way to go.

Pretreatment strategy and experimental configuration
Motivation
From the description of the relevant literature and the analysis of the experimental data set, we

can draw a conclusion: in the RDF data, the number of attributes is far less than the number of
tuples.

For example, in [5] literature, the number of tuples of data set in the Barton library is about 50
million 250 thousand, while the number of different attributes is only about 221. In our experiments,
we find that there are about 8 million [12] in the data set DBLP, and the number of attributes is less
than 100, the same conclusion in the LUBM data set [13].

And in the experiment, because of the existence of various factors, there is no final result in
some query query result, this leads to a large amount of computing resources wasting, so we did
some works to cope with this situation on the original query process pretreatment, the steps are as
follows:

1)using related tools to import data into the database.
2)Defined all the attributes which get from the query, then stored in a new property table after

the removal of the duplicate.
3)Judge in the property ta ble before executing the query, if the query does not exist, then the

query directly to the end; if it exists, then proceed to the next step.
Experimental configuration
Experiment on a PC machine, the specific configuration is as follows:
CPU:Intel (R) CORE (TM) i7-4790 3.60GHz
Memory: 4GB
Operating system: Ubuntu 14.0464 bit Database: POSTGRES 9.3
Programming language: Java
Programming tools: Eclipse
In order to consist with other storage methods of environment and reduce the differences,

experiments were carried out under Ubuntu operating system, Ubuntu Kylin is an open source
project supported by China CCN joint laboratory, it is focusing on the usability of the system,
through providing customized Chinese user experience by customizing the localized desktop user
environment and developing applications that meet user specific needs, is one of the most China
characteristics of the operating system, since its launch, is widely used in domestic research field.

The experiment uses the database for POSTGRES 9.3, which is developed by the Department of
computer science, University of California at Berkeley. It can support most of the SQL standard and
offers other functions of complex queries, such as foreign key, view, transaction integrity etc. And it
can be extended, such as the addition of new data types, functions, operators, etc. It is also very rich
on supporting for the interface, almost all types of database client interface, which is widely used in
database research.

The experiment used Java language and Eclipse development tool, because the Jena and other

Advances in Engineering Research, volume 118

856

tools provides a wealth of features for the operation of RDF data.

Experimental process and result analysis
Experimental process
This thesis used LUBM as the experimental data set, LUBM is developed by the Lehigh (The

Lehigh University), in order to promote the standardization and evaluation system of Semantic Web
data.some semantic data which describes the school, including automatic data generator, standard
query problem, and measure etc.

Specific process of experiment:
1)use LUBM automatic data generator to generate data (specific operation

reference [13] provided instructions).
2)download and install JENA2[14], programming will generate the data into the database

LUBM_DATA.
3)In order to do comparison with experimental results, Using the JENA2[14] parser generates

data parsing to generate LUBM_data.txt files, then the resulting LUBM_data.txt format data is
converted to the syntax format required by the gStore, and also into the format required by the
RDF-3X language, import RDF-3X.

4)We used the LUBM which provided by the 14 Standard Query in the first 9 as a test query
(the average value of the implementation of the, unit MS), the results shown in table 1.

5)Modify the properties of the query Q6, Q7, Q8,Q9, ensure that attributes do not exist in the
dataset and other queries unchanged, again step 4 for the query, the last run in a relational database,
as shown in table 2.

Experimental result analysis
Table 1 results of original query execution

 gStore RDF-3X

Q1 25.3 37.3

Q2 39.3 135.0

Q3 24.0 17.0

Q4 224.3 19.7

Q5 213.0 10.7

Q6 230.3 1168.7

Q7 41.0 180.0

Q8 229.3 175.0

Q9 194.0 220.7

Table 2 results of the modified query execution

 gStore RDF-3X Pre process relational database
Q1 25.3 37.3 43.2

Q2 39.3 135.0 99.7

Q3 24.0 17.0 31.0

Q4 224.3 19.7 232.4

Q5 213.0 10.7 188.7

Q6 230.3 1168.7 5.3

Q7 41.0 180.0 4.8

Q8 229.3 175.0 5.0

Q9 194.0 220.7 4.9

From the experimental results we can see that for the Q1, Q2, Q3, Q4, Q5 query which
unmodified, time in the pretreatment of relational database query and RDF-3X slightly longer than
gStore. And the query Q6, Q7, Q8, Q9 which modified and its Characteristic that the property does
not exist in the data. Therefore, only the property table in the relational database is searched, and
exit the query directly after the property is not found. However, the length of the attribute table is

Advances in Engineering Research, volume 118

857

relatively small, and it is invariable, so greatly improve the efficiency of the inquiry, the example of
the effect as shown in figure 1.

Figure 1 comparison of pretreatment query example

Conclusion
This paper makes a summary and analysis of the RDF data storage methods, according to the

characteristics of data, the query process is pre processed in the relational database, so as to improve
the efficiency of queries that do not contain data set attributes in the query. The next research
project is divided into two parts, first, using more data sets continue to experiment to verify the
effectiveness of the pretreatment such as DBLP and Yago2 data sets. Second, explore the discovery
of a new form of data storage management, and support for more efficient and diverse query
services.

References
[1] Berners-Lee T, Hendler J, Lassila O. The semantic web[J]. Scientific american, 2001, 284(5):
28-37.
[2] Pan J Z. Resource description framework[M]//Handbook on Ontologies. Springer Berlin
Heidelberg, 2009: 71-90.
[3] Prud’Hommeaux E, Seaborne A. SPARQL query language for RDF[J]. W3C recommendation,
2008, 15:1-27.
[4] Wilkinson K, Wilkinson K. Jena property table implementation[J]. 2006:1-13.
[5] Abadi D J, Marcus A, Madden S R, et al. SW-Store: a vertically partitioned DBMS for Semantic
Web data management[J]. The VLDB Journal—The International Journal on Very Large Data Bases,
2009, 18(2): 385-406.
[6] Abadi D J. Column Stores for Wide and Sparse Data[C]//CIDR. 2007: 292-297.
[7] Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for semantic web data
management[J]. Proceedings of the VLDB Endowment, 2008, 1(1): 1008-1019.
[8] Neumann T, Weikum G. The RDF-3X engine for scalable management of RDF data[J]. The
VLDB Journal, 2010, 19(1): 91-113.
[9] Zou L, Mo J, Chen L, et al. gStore: answering SPARQL queries via subgraph matching[J].
Proceedings of the VLDB Endowment, 2011, 4(8): 482-493.
[10] Papailiou N, Tsoumakos D, Konstantinou I, et al. H2RDF+: an efficient data management
system for big RDF graphs[C]//Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. ACM, 2014: 909-912.

Advances in Engineering Research, volume 118

858

[11] Aluç G, Özsu M T, Daudjee K. Workload matters: Why RDF databases need a new design[J].
Proceedings of the VLDB Endowment, 2014, 7(10): 837-840.
[12] Neumann T, Weikum G. x-RDF-3X: Fast querying, high update rates, and consistency for RDF
databases[J]. Proceedings of the VLDB Endowment, 2010, 3(1-2): 256-263.
[13] Ley M. DBLP: some lessons learned[J]. Proceedings of the VLDB Endowment, 2009, 2(2):
1493-1500.
[14] Guo Y, Pan Z, Heflin J. LUBM: A benchmark for OWL knowledge base systems[J]. Web
Semantics: Science, Services and Agents on the World Wide Web, 2005, 3(2): 158-182.
[15] Wilkinson K, Sayers C, Kuno H A, et al. Efficient RDF Storage and Retrieval in
Jena2[C]//SWDB. 2003, 3: 131-150.

Advances in Engineering Research, volume 118

859

