

NK-GPGPU A GPGPU model for nested kernels
 Qianli XING1,a, Liang HU2,b, Xilong CHE3,c

1College of Computer Science and Technology, Jilin University, ChangChun, 130012,China
2College of Computer Science and Technology, Jilin University, ChangChun, 130012,China
3College of Computer Science and Technology, Jilin University, ChangChun, 130012,China

aemail:1043354124@qq.com, bemail:hul@jlu.edu.cn, cemail:chexilong@jlu.edu.cn

Keywords: GPGPU; Conceptual Model; Micro-architecture

Abstract. More and more scientific problems are now using GPGPU to solve. However , the
existing GPGPU did not give a good solution for the problems such as recursive calls and multiple
calls problems. Our proposed NKGPGPU model is a descriptive model that solves the key issues of
the NK-GPGPU, including hardware architecture, task organization, task execution, and task
scheduling. We also prove the validity of our model by optimizing an existing GPGPU performance
prediction model.

Introduction
Nvidia's CUDA Toolkit supports a C-like programming language that allows the user to execute

code on the corresponding GPU. In the Fermi structure, the CPU needs to start the GPU task, the
GPU in the results back to the CPU, CPU and then start a new GPU task, so this application
requires a lot of rewriting to run on the Fermi structure of the GPU. Kepler series GPUs support
Dynamic Parallelism, which starts new tasks on the GPU side, synchronizes the results, and does
not require the CPU to participate in the scheduling process. There are also many studies of
dynamic parallelism. For example, [1]shows that dynamic parallelism can improve the performance
of some clustering algorithms. [2] gives a solution to the existence of parallel code in the thread of
the method, and hope that this method can be used instead of CUDA's dynamic parallelism.

There are, however, two major problems with dynamic parallelism. The first is the father of the
kernel communication must pass global memory; the second is in the GPU side to start the Kernel's
overhead is very large [2]. The official whitepaper gives more real-world descriptions of what a
GPU's computing power can do, rather than how components work together. The programming
guidelines give the syntax and the rules of the code, without giving the idea of what kind of
microarchitecture has led to these rules. Without a detailed description of the hardware details,
researchers and developers can not fully exploit the potential of hardware to improve application
performance.

For the GPGPU study,[3], and [4] goals in optimizing the global memory access and achieve as
much thread-level parallelism.[5], [6] In terms of structural improvements.

The purpose of this paper is to present a novel hardware component and internal mechanism of
operation. The main work of this paper is summarized as follows:

We propose an NKGPGPU model, which includes task organization, hardware structure,
scheduling mechanism and execution mechanism, in which task organization gives the data
structure between multiple tasks. Finally, by referring to the ideas in [7], a predictive model is
given.

NK-GPGPU Model Description
NKGPGPU model includes four main sub-models, namely, hardware structure model, task

organization sub-model, task execution sub-model, task scheduling sub-model. The description
model is mainly used to explain the major principles in the structural design of NKGPGPU, as well
as in operation.

2nd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 118

971

mailto:1043354124@qq.com

Hardware Structure Model
In the design of the hardware model, we summarize the main components that need to be

considered in the chip design and software development, as well as the interaction between the two.
NKGPGPU hardware structure of the sub-model shown in Figure 1, each of which we will give the
corresponding parts of the explanation.

Processsing Element for Computing (PEc): A component of a task used to perform computations.
Processing Unit for Computing (PUc): A unit for performing computational tasks that is part of a

PEc component.
Processsing Element for datamovement (PEc): A component used to perform data transfer tasks.
Processing Unit for datamovement (PUc): A unit for performing data transfers, which is part of a

PEd component.
Sechduiling Element (SE): A component responsible for task scheduling.
Task Unit (TU): A component used to receive new tasks.
Buffer: used to store the state of the information components.
In the storage system abstraction process, regardless of the existence of cache at all levels and

impact. Each PUc and PUd part in the figure has its own independent local memory. Shared memoy
can be accessed and modified by all PEc and PEd components, and global memory can only be
modified and accessed by PEd components. Specifically, the PEd component is responsible for data
transfer between global memory and shared memory.

Task Organization Submodel
[8]proposed a flat multi-layer code structure, we learn from some of the definitions. And based

on the NKGPGPU model to modify the relevant concepts, proposed a three-tier code model, these
concepts have been given below:

• ProcessingScript forComputing (PSc): The processing code responsible for calculating the task.
• ProcessingScript for Datamovement (PSd): The processing code responsible for data transfer.
• Scheduling Script for Computing (SSc): The code responsible for calculating the task schedule.
• Scheduling Script for Datamovement (SSd): The code that is responsible for data transfer task

scheduling.
• Script List for Computing (SLC): A section of code that contains all the information about

parallel computing tasks. An SLC is a column of PSC and SSC.
• Script List for Datamovement (SLD) contains a section of code for all the information about

parallel computing tasks. An SLC is a column of PSD and SSD.
• The Script List for Program (SLP) contains all the code for all the information about a parallel

task. An SLC is a column of SLC and SLD.
In the task of the logical structure, the reference CUDA task system, the current design for a

three-tier task structure. The description of the minimum granularity task is given below.
• Computing Task Instance (CTI): A running SLC instance with a unique index. Each SLC

instantiates a set of CTIs, which is the task width of the SLC. A CTI within a group shares the same
SLC, but runs on a memory address based on the CTI index location.

• Datamovement Task Instance (DTI): An SLD running instance with a unique index. Each SLD
instantiates a set of DTIs, which is the SLID task width. DTIs within a group share the same SLD,
but run on memory addresses based on the DTI index location.

Task organization is actually a code structure and task structure mapping, the corresponding
relationship shown in Figure 5. Each SLC will generate a CTI Grid, each CTI Grid contains a
number of CTI Block, each DTI Block contains a number of CTI. CTI is divided into DTI warps in
CTI blocks Executing such an SLP instantiates several DTI Grid and CTI Grid.

Advances in Engineering Research, volume 118

972

Local memory

PUc

Local memory

PUc

PEc

Local memory

PUd

Local memory

PUd

PEd

Shared memory

TU

Buffer

SE

TU

Buffer

SE

TU

Buffer

SE

TU

Buffer

SE

global memory

aa

aa

SLD

PSD

SSD

PSD

SSD

aa

SLC

PSC

SSC

PSC

SSC

aa

SLP

DTI

DTI

DTI

DTI block
DTI

DTI

DTI

DTI block

DTI

DTI

DTI

DTI block

aa

aa aa

aa

DTI Grid

CTI

CTI

CTI

CTI block
CTI

CTI

CTI

CTI block

CTI

CTI

CTI

CTI block

aa

aa aa

aa

CTI Grid

aa aa

Fig.1. Hardware model Fig.2. Task Organization Chart

Task Execution Submodel
The task execution sub-model is a code-to-hardware mapping, as shown in Figure 3.
PSc Consumption: Logically a set of parallel CTIs is allocated to a set of available PEs for

execution. Available indicates that the PEc has sufficient capacity to receive a new set of CTIs.
Physically, the associated PSc is parsed by the SEc component, and the relevant information is
stored in the TB component.

PSd Consumption: Logically a set of parallel CTIs is allocated to a set of available PEs for
execution. Available indicates that the PEc has sufficient capacity to receive a new set of CTIs.
Physically, the associated PSc is parsed by the TU in the SE part, and the relevant information is
stored in the TB part.

SS Consumption: Both SSd and SSc are executed in the SE part.

Local memory

PUc PUc

PEc

PUd PUd

PEd

Shared memory

TU

Buffer

SE

g
lo

b
a

l m
e

m
o

ry

PSd

SSd

PSc

SSc

PSd

SSd

Local memory

Local memory Local memory

Fig.3. Task execution submodel

Model performance analysis

[7] gives a CUDA GPGPU performance prediction model that can be used to predict the
execution time. In this paper,we made changes to adapt to our model, the specific parameters shown
in Table 1.

Advances in Engineering Research, volume 118

973

DTI related parameters

parameter definition
N_B^D(SLD) The number of DTI blocks allocated to a PE_D component in an SLD

N_w^D The number of DTI warp in each DTI Block
N_t^D The number of DTIs in each DTI warp
D^D Pipeline depth of PE_D

N_c^D The number of PU_Ds per PE_D

C_T(SLD)
The max model represents the maximum number of cycles required for a DTI in an

SLD
C(SLD) The number of cycles required for an SLD

CTI related parameters
parameter definition
N_w^C The number of CTI warps in each CTI block
N_t^C The number of CTIs in each CTI warp
D^C Pipeline Depth of PE_E

N_c^C The number of PE_C on each chip

C_T(SLC)
The max model indicates the maximum number of cycles required for a CTI in an

SLC
C(SLC) The number of cycles required for an SLC

SLP related parameters
parameter definition

C_SLD(SLP)
The MAX model represents the maximum number of cycles required for an SLD in

a SLP

C_SLC(SLP)
The MAX model represents the maximum number of cycles required for an SLC in

an SLP
C(SLP) The number of cycles required for an SLP

Table 1
Equation (1) and (2) give the formula for the number of cycles that an SLD and an SLC need to

perform. C_T ^ (SLD) in equation (1) is the representative quantity of a DTI, which is expressed by
the maximum value of all DTIs in the formula. Similarly, C_T ^ (SLC) is a representative quantity
of CTI in the formula (2), which is expressed by the maximum value of all CTIs.

 (1)

 (2)

Equation (3) gives the number of cycles required to calculate SLP. In this case, C (SLP) can be
obtained through the MAX model, expressed as the formula (3); If the scheduling did not play a
role in the whole (C) , Then C (SLP) can be obtained through SUM model, expressed as formula(4).

 (3)
 (4)

[7] proposed in the performance prediction model, a thread of the operating cycle is divided into
the computing cycle and access cycle. The calculation cycle is denoted by Ncomp and the memory
consumption cycle is denoted by Nmemory. In a best-case scenario, the computation task and the
memory access task can be hidden from each other. Then, one thread runs for C (T) = MAX
(Ncomp, Nmemory). If the scheduling has no effect, = SUM (Ncomp, Nmemory).

The analysis of the execution cycle portion of a thread, including the analysis of the various
computational instructions and the cycles required for fetching instructions, is still used in this paper.
The cache and synchronization effects are not considered in this paper and are not considered in this
paper. For example, an example of a matrix multiplication of size N * N in CUDA is that the size of
the block is 16 * 16. A thread needs to complete the computation cycle as 760N / 16 and the
required access operation is 240N / 16. In the modified performance model, C_T ^ (SLD) = 240N /

Advances in Engineering Research, volume 118

974

16, C_T ^ (SLC) = 760N / 16, assuming that the size of CTI Block and DTI Blcok is 16 * 16. The
rest of the formula is also set up in 7, can be obtained for the Kernel, that is, C (SLP) analysis. An
analysis of all SLPs in a dependency tree can also be derived from this result, and is not described
here.

Conclusion
In this paper, we give a new GPGPU hardware structure, the logical structure of the task, code

structure, and the mapping between them. From the hardware structure, optimize the GPU to start a
new task in the process. And is the first article gives the device-side start the task of the data
structure of the article. This paper also optimizes an existing performance prediction model to fit the
proposed NK-GPGPU.

References

[1] Jeffrey DiMarco, and Michela Taufer, 'Performance Impact of Dynamic Parallelism on
Different Clustering Algorithms', in Modeling and Simulation for Defense Systems and
Applications Viii, ed. by E. J. Kelmelis (2013).

[2] Yi Yang, and Huiyang Zhou, 'Cuda-Np: Realizing Nested Thread-Level Parallelism

in Gpgpu Applications', (2014), 93-106.

[3] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou, 'A Gpgpu Compiler for Memory
Optimization and Parallelism Management', Acm Sigplan Notices, 45 (2010), 86-97.

[4] Liu Yixun, E. Z. Zhang, and X. Shen, 'A Cross-Input Adaptive Framework for Gpu Program
Optimizations', in 2009 IEEE International Symposium on Parallel & Distributed Processing (2009),
pp. 1-10

[5] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu,
and Yale N. Patt, 'Improving Gpu Performance Via Large Warps and Two-Level Warp Scheduling',
in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture
(Porto Alegre, Brazil: ACM, 2011), pp. 308-17.

[6] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley, and Saman
Amarasinghe, 'Portable Performance on Heterogeneous Architectures', SIGARCH Comput. Archit.
News, 41 (2013), 431-44.

[7] Kishore Kothapalli, Rishabh Mukherjee, M. Suhail Rehman, Suryakant Patidar, P. J.
Narayanan, and Kannan Srinathan, 'A Performance Prediction Model for the Cuda Gpgpu Platform',
16th International Conference on High Performance Computing (Hipc), Proceedings (2009),
463-72.

[8] Liang Hu, Xilong Che, and Si-Qing Zheng, 'A Closer Look at Gpgpu', Acm Computing
Surveys, 48 (2016).

Advances in Engineering Research, volume 118

975

