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Abstract. More and more scientific problems are now using GPGPU to solve. However , the 
existing GPGPU did not give a good solution for the problems such as recursive calls and multiple 
calls problems. Our proposed NKGPGPU model is a descriptive model that solves the key issues of 
the NK-GPGPU, including hardware architecture, task organization, task execution, and task 
scheduling. We also prove the validity of our model by optimizing an existing GPGPU performance 
prediction model. 

Introduction 
Nvidia's CUDA Toolkit supports a C-like programming language that allows the user to execute 

code on the corresponding GPU. In the Fermi structure, the CPU needs to start the GPU task, the 
GPU in the results back to the CPU, CPU and then start a new GPU task, so this application 
requires a lot of rewriting to run on the Fermi structure of the GPU. Kepler series GPUs support 
Dynamic Parallelism, which starts new tasks on the GPU side, synchronizes the results, and does 
not require the CPU to participate in the scheduling process. There are also many studies of 
dynamic parallelism. For example, [1]shows that dynamic parallelism can improve the performance 
of some clustering algorithms. [2] gives a solution to the existence of parallel code in the thread of 
the method, and hope that this method can be used instead of CUDA's dynamic parallelism.  

There are, however, two major problems with dynamic parallelism. The first is the father of the 
kernel communication must pass global memory; the second is in the GPU side to start the Kernel's 
overhead is very large [2]. The official whitepaper gives more real-world descriptions of what a 
GPU's computing power can do, rather than how components work together. The programming 
guidelines give the syntax and the rules of the code, without giving the idea of what kind of 
microarchitecture has led to these rules. Without a detailed description of the hardware details, 
researchers and developers can not fully exploit the potential of hardware to improve application 
performance. 

For the GPGPU study,[3], and [4] goals in optimizing the global memory access and achieve as 
much thread-level parallelism.[5], [6] In terms of structural improvements. 

The purpose of this paper is to present a novel hardware component and internal mechanism of 
operation. The main work of this paper is summarized as follows: 

We propose an NKGPGPU model, which includes task organization, hardware structure, 
scheduling mechanism and execution mechanism, in which task organization gives the data 
structure between multiple tasks. Finally, by referring to the ideas in [7], a predictive model is 
given. 

NK-GPGPU Model Description 
NKGPGPU model includes four main sub-models, namely, hardware structure model, task 

organization sub-model, task execution sub-model, task scheduling sub-model. The description 
model is mainly used to explain the major principles in the structural design of NKGPGPU, as well 
as in operation. 
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Hardware Structure Model 
In the design of the hardware model, we summarize the main components that need to be 

considered in the chip design and software development, as well as the interaction between the two. 
NKGPGPU hardware structure of the sub-model shown in Figure 1, each of which we will give the 
corresponding parts of the explanation. 

Processsing Element for Computing (PEc): A component of a task used to perform computations. 
Processing Unit for Computing (PUc): A unit for performing computational tasks that is part of a 

PEc component. 
Processsing Element for datamovement (PEc): A component used to perform data transfer tasks. 
Processing Unit for datamovement (PUc): A unit for performing data transfers, which is part of a 

PEd component. 
Sechduiling Element (SE): A component responsible for task scheduling. 
Task Unit (TU): A component used to receive new tasks. 
Buffer: used to store the state of the information components. 
In the storage system abstraction process, regardless of the existence of cache at all levels and 

impact. Each PUc and PUd part in the figure has its own independent local memory. Shared memoy 
can be accessed and modified by all PEc and PEd components, and global memory can only be 
modified and accessed by PEd components. Specifically, the PEd component is responsible for data 
transfer between global memory and shared memory. 

Task Organization Submodel 
[8]proposed a flat multi-layer code structure, we learn from some of the definitions. And based 

on the NKGPGPU model to modify the relevant concepts, proposed a three-tier code model, these 
concepts have been given below: 

• ProcessingScript forComputing (PSc): The processing code responsible for calculating the task. 
• ProcessingScript for Datamovement (PSd): The processing code responsible for data transfer. 
• Scheduling Script for Computing (SSc): The code responsible for calculating the task schedule. 
• Scheduling Script for Datamovement (SSd): The code that is responsible for data transfer task 

scheduling. 
• Script List for Computing (SLC): A section of code that contains all the information about 

parallel computing tasks. An SLC is a column of PSC and SSC. 
• Script List for Datamovement (SLD) contains a section of code for all the information about 

parallel computing tasks. An SLC is a column of PSD and SSD. 
• The Script List for Program (SLP) contains all the code for all the information about a parallel 

task. An SLC is a column of SLC and SLD. 
In the task of the logical structure, the reference CUDA task system, the current design for a 

three-tier task structure. The description of the minimum granularity task is given below. 
• Computing Task Instance (CTI): A running SLC instance with a unique index. Each SLC 

instantiates a set of CTIs, which is the task width of the SLC. A CTI within a group shares the same 
SLC, but runs on a memory address based on the CTI index location. 

• Datamovement Task Instance (DTI): An SLD running instance with a unique index. Each SLD 
instantiates a set of DTIs, which is the SLID task width. DTIs within a group share the same SLD, 
but run on memory addresses based on the DTI index location. 

Task organization is actually a code structure and task structure mapping, the corresponding 
relationship shown in Figure 5. Each SLC will generate a CTI Grid, each CTI Grid contains a 
number of CTI Block, each DTI Block contains a number of CTI. CTI is divided into DTI warps in 
CTI blocks Executing such an SLP instantiates several DTI Grid and CTI Grid. 
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Fig.1. Hardware model     Fig.2. Task Organization Chart 

Task Execution Submodel 
The task execution sub-model is a code-to-hardware mapping, as shown in Figure 3. 
PSc Consumption: Logically a set of parallel CTIs is allocated to a set of available PEs for 

execution. Available indicates that the PEc has sufficient capacity to receive a new set of CTIs. 
Physically, the associated PSc is parsed by the SEc component, and the relevant information is 
stored in the TB component. 

PSd Consumption: Logically a set of parallel CTIs is allocated to a set of available PEs for 
execution. Available indicates that the PEc has sufficient capacity to receive a new set of CTIs. 
Physically, the associated PSc is parsed by the TU in the SE part, and the relevant information is 
stored in the TB part. 

SS Consumption: Both SSd and SSc are executed in the SE part. 

Local memory

PUc PUc

PEc

PUd PUd

PEd

Shared memory

TU

Buffer

SE

g
lo

b
a

l m
e

m
o

ry

PSd

SSd

PSc

SSc

PSd

SSd

Local memory

Local memory Local memory

 
Fig.3. Task execution submodel 

Model performance analysis 

[7] gives a CUDA GPGPU performance prediction model that can be used to predict the 
execution time. In this paper,we made changes to adapt to our model, the specific parameters shown 
in Table 1. 
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DTI related parameters 

parameter definition 
N_B^D(SLD) The number of DTI blocks allocated to a PE_D component in an SLD 

N_w^D The number of DTI warp in each DTI Block 
N_t^D The number of DTIs in each DTI warp 
D^D Pipeline depth of PE_D 

N_c^D The number of PU_Ds per PE_D 

C_T(SLD) 
The max model represents the maximum number of cycles required for a DTI in an 

SLD 
C(SLD) The number of cycles required for an SLD 

CTI related parameters 
parameter definition 
N_w^C The number of CTI warps in each CTI block 
N_t^C The number of CTIs in each CTI warp 
D^C Pipeline Depth of PE_E 

N_c^C The number of PE_C on each chip 

C_T(SLC) 
The max model indicates the maximum number of cycles required for a CTI in an 

SLC 
C(SLC) The number of cycles required for an SLC 

SLP related parameters 
parameter definition 

C_SLD(SLP) 
The MAX model represents the maximum number of cycles required for an SLD in 

a SLP 

C_SLC(SLP) 
The MAX model represents the maximum number of cycles required for an SLC in 

an SLP 
C(SLP) The number of cycles required for an SLP 

Table 1 
Equation (1) and (2) give the formula for the number of cycles that an SLD and an SLC need to 

perform. C_T ^ (SLD) in equation (1) is the representative quantity of a DTI, which is expressed by 
the maximum value of all DTIs in the formula. Similarly, C_T ^ (SLC) is a representative quantity 
of CTI in the formula (2), which is expressed by the maximum value of all CTIs.  

   (1) 

    (2) 

Equation (3) gives the number of cycles required to calculate SLP. In this case, C (SLP) can be 
obtained through the MAX model, expressed as the formula (3); If the scheduling did not play a 
role in the whole (C) , Then C (SLP) can be obtained through SUM model, expressed as formula(4).  

        (3) 
       (4) 

[7] proposed in the performance prediction model, a thread of the operating cycle is divided into 
the computing cycle and access cycle. The calculation cycle is denoted by Ncomp and the memory 
consumption cycle is denoted by Nmemory. In a best-case scenario, the computation task and the 
memory access task can be hidden from each other. Then, one thread runs for C (T) = MAX 
(Ncomp, Nmemory). If the scheduling has no effect, = SUM (Ncomp, Nmemory). 

The analysis of the execution cycle portion of a thread, including the analysis of the various 
computational instructions and the cycles required for fetching instructions, is still used in this paper. 
The cache and synchronization effects are not considered in this paper and are not considered in this 
paper. For example, an example of a matrix multiplication of size N * N in CUDA is that the size of 
the block is 16 * 16. A thread needs to complete the computation cycle as 760N / 16 and the 
required access operation is 240N / 16. In the modified performance model, C_T ^ (SLD) = 240N / 
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16, C_T ^ (SLC) = 760N / 16, assuming that the size of CTI Block and DTI Blcok is 16 * 16. The 
rest of the formula is also set up in 7, can be obtained for the Kernel, that is, C (SLP) analysis. An 
analysis of all SLPs in a dependency tree can also be derived from this result, and is not described 
here. 

Conclusion 
In this paper, we give a new GPGPU hardware structure, the logical structure of the task, code 

structure, and the mapping between them. From the hardware structure, optimize the GPU to start a 
new task in the process. And is the first article gives the device-side start the task of the data 
structure of the article. This paper also optimizes an existing performance prediction model to fit the 
proposed NK-GPGPU. 
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