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Abstract 

This paper studies the fault reconstruction problem for the continuous linear time-invariant system. A new 

disturbance-decoupled fault reconstruction design is proposed by cooperating with the idea of the adaptive sliding 

mode method. The new scheme does not impose restrictions on both the upper boundary of faults and the derivative 

of faults. Furthermore, the decoupling technique is used to deal with the disturbance input. Finally, simulation 

results are undertaken to validate the effectiveness of the proposed method. 
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1. Introduction 

In the last decade, automatic control systems have 

become more and more complex in order to meet the 

increasing demands for high production. This 

development calls for more system reliability, safety 

and dependability, which attracts compelling research 

interest on fields like state monitoring, fault diagnosis 

and fault tolerant control1. Furthermore, fault detection 

and isolation (FDI) plays an important role for timely 

detection of faults, especially in the field of active fault 

tolerant control.  

Observer-based method is very fundamental tool to 

implement the fault reconstruction. The basic idea is to 

estimate the measured system outputs by using some 

kind of observer, then reconstruct the fault by utilizing 

the residual signal (error between the estimated output 

and the measured one). Many researchers focus on 

studies of sliding mode observer. The equivalent output 

injection concept based on sliding mode observer is 

used to reconstruct fault signal in Ref. 2.  Ref. 3 

proposes the FDI scheme with fault reconstruction 

capability for linear parameter varying system. 

Moreover, the adaptive method can also be used to 

design the fault reconstruction observer. A general 

framework in order to implement fast estimation is 

proposed in Ref. 4 by using the adaptive observer. In 

addition, fault reconstruction for nonlinear systems also 

attract many researchers' interest. The integrated design 

of observer-based fault detection for nonlinear system is 

addressed in Ref. 5. 
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In this paper, our contribution is design of a fault 

reconstruction observer by using the idea of the adaptive 

sliding mode method. The condition that the upper 

boundary of faults should be known is not needed. Also, 

the method in this paper does not impose restrictions on 

the derivative of faults. Furthermore, the disturbance 

input is considered by using the decoupling technique. 

The remainder of the paper is arranged as follows. 

In Section 2, the problem formulation is addressed. The 

novel disturbance-decoupled fault reconstruction design 

is studied in Section 3. Section 4 provides an example to 

illustrate the theoretical result. Finally, some concluding 

remarks are given in Section 5. 

Through this paper, the notation is standard. 
NI and 

n m
 represent the identity matrix of dimension N and 

the set of n m  real matrices, respectively. 
n

 denotes 

the set of real n-vectors ( 1n matrices). The superscript 

T denotes transpose for real matrices. 

2. Preliminaries 

Consider the continuous linear time-invariant system: 

 ( ) ( ) ( ) ( ) ( )x t Ax t Bu t Ef t Md t     (1) 

 ( ) ( )y t Cx t  (2) 

where ( ) nx t  is system state, ( ) mu t   is system 

input, ( ) py t   is  measured system output, ( ) qf t   

represents the time-varying actuator fault and ( ) sd t   

is the disturbance input and model uncertainties. It is 

assumed that A , B , C , E  and M  are known constant 

real matrices with appropriate dimensions. The pair 

( A , C ) is observable. 

Remark.1 The actuator fault resulting from loss of 

effectiveness has been discussed in many researches. It 

can be regarded as the additive fault described in above 

system when the actuator is not totally damaged. 

3. A novel disturbance-decoupled fault 

reconstruction design 

In this section, we aim to design a fault reconstruction 

scheme such that the fault can be accurately estimated, 

even though there exists the external disturbance. The 

main idea is that designing a matrix decouples the 

system disturbance and utilizing residual information 

estimates the fault. The fault reconstruction observer for 

the faulty system is designed as 

  ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )x t Ax t Bu t Ef t L y t y t      (3) 

 ˆ ˆ( ) ( )y t Cx t  (4) 

  ˆ( ) ( ) ( )r t T y t y t   (5) 

where ( ) rr t   is the residual signal, ˆ ( ) qf t   

represents the reconstruction of the actuator fault, 
n pL  is observer gain matrix, and 

r pT   is the 

matrix for decoupling the disturbance. 

Denoting that state error ˆ( ) ( ) ( )e t x t x t   and 

reconstruction error of the fault ˆ( ) ( ) ( )f t f t f t  , 

system error dynamics can be written as 

 ( ) ( ) ( ) ( ) ( )e t A LC e t Ef t Md t     (6) 

 ( ) ( )r t TCe t  (7) 

In order to implement the disturbance-decoupled fault 

reconstruction scheme, the following assumption is 

given. 

There exist a matrix T  and an observer gain 

matrix L  satisfying: 

 0TCM   and TCE  has full column rank. 

 The rows of TC  are left eigenvectors of Hurwitz 

A A LC   corresponding to real eigenvalues. 

Lemma 1. [Barbalat's Lemma] If a differentiable 

function ( )t  satisfies ( )t , ( )t L  , and ( ) pt L   

for some value of [1, )p  , then ( ) 0t   as 0t  . 

Theorem 1. Consider the fault system Eq. (1)-(2), the 

fault reconstruction observer Eq. (3)-(4) is realized by 

using: 

 
( )ˆ ( )
( )

Hr t
f t

Hr t

‖ ‖

, (8) 

 ( )Hr t  ‖ ‖, (9) 

such that ( ) 0tlim r t   and  

 
( )
lim ( ) 0

st t

tt
f d 




 , (10) 

where, ( )TH PTCE ,   is a design parameter, the 

matrix 0P   satisfies 0T P P Q      , 

1 2{ , , , }rdiag     , and 
i  is the eigenvalue of 

A LC  corresponding to the i th row of TC . 

Proof. We define *    . The derivative of the 

residual ( )r t  can be obtained as 

 

 ( ) ( ) ( )

( ) ( )

( ) ( )

r t TC A LC e t TCEf t

TCe t TCEf t

r t TCEf t

  

  

  

 

(11)

 

Consider a Lyapunov function candidate 

 
21 1

( ) ( ) ( )
2 2

TV t r t Pr t 


   (12) 
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Taking the time derivative of ( )V t  along the trajectory 

of Eq. (11) yields 

 

   

*

*

*

2

1
( ) ( ) ( )

2

1
( ) ( ) ( )

1 ˆ( ) ( ) ( ) ( ) ( ) ( )
2

1
( )

1 ˆ( ) ( ) ( ( )) ( ) ( ( )) ( )
2

( ) ( )

( ) ( ) ( ) ( )

ˆ( ( )) ( ) (

T T

T

T TT

T T T

min

T

V t r t P P r t

r t PTCEf t

r t Qr t Hr t f t Hr t f t

r t Qr t Hr t f t Hr t f t

Hr t

Q r t Hr t f t

Hr t f t

  


  


 





   

  

   

 

   

 

 

  

‖ ‖

‖ ‖ ‖ ‖‖ ‖

*

2 *

) ( )

( ) ( ) ( ) ( ( ) )

ˆ( ( )) ( ) ( )

min

T

Hr t

Q r t Hr t f t

Hr t f t Hr t



 



  

 

‖ ‖

‖ ‖ ‖ ‖‖ ‖

‖ ‖

 

(13)

 

If we choose a large enough * , then *( ) 0f t  ‖ ‖ . 

The above inequality can be written as 

 
2 ˆ( ) ( ) ( ) ( ( )) ( )

( )

‖ ‖

‖ ‖





 



T

minV t Q r t Hr t f t

Hr t
 

(14)
 

Based on Eq.(8), we can obtain 

 2( ) ( ) ( )minV t Q r t ‖ ‖  (15) 

Hence, ( )V t L (i.e., ( )V t  is uniformly bounded), 

which implies ( )r t , * L  . Then *     is 

uniformly bounded. Since lim ( ) 0
t

V t


 , we obtain that 

2( )r t L  by integrating both sides of Eq. (15) from 0  

to . Using Lemma 1, we conclude that lim ( ) 0
t

r t


 . 

Since lim ( ) 0
t

r t


 , it holds that 

 lim ( ) 0
st t

tt
r d 




   (16) 

 
( )

lim ( )

lim [ ( ) ( )]

0

t

s
t

t ts TCEf d
t

r t t r t

 






  





 

(17)

 

Utilizing the condition that TCE  is full column 

rank, it follows that 

 lim ( ) 0
st t

tt
f d 




  (18) 

This ends the proof. 

 

Remark 2. By cooperating with the adaptive sliding 

mode idea, the upper bound of the fault information is 

not necessary. Compared to Ref. 6, the condition that 

the fault has the known upper bound (i.e. ( ) upperf t f‖ ‖ , 

where 
upperf  is a prior) can be released. 

Remark 3. Note that the discontinuous signal is used to 

design the fault reconstruction observer. In the practical 

problem, the boundary layer methodology can be taken 

into account to deal with the chattering trouble. 

4. Simulation Results 

In this section, a simulation example on a vertical 

takeoff and landing (VTOL) linear aircraft model is 

given to validate the effectiveness of the proposed fault 

reconstruction approach.  

The linearization dynamics of the aircraft can be 

described by system (1)-(2), where matrix coefficients 

have following values6 

 

0.0366 0.0271 0.0188 0.4555

0.0482 1.01 0.0024 4.0208

0.1002 0.3681 0.707 1.420

0.0 0.0 1.0 0.0

A

  
 

 
 
 
 
 

 , 

0.4422 0.1761

3.5446 7.5922

5.52 4.49

0.0 0.0

B

 
 


 
 
 
 

，

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

C

 
 
 
 
 
 

, 

 0.4 0 0 0.4
T

M  .  (19) 

In this example, we consider the actuator fault 

so E B  holds. 

The decoupled matrix T  in Eq.(5) can be designed 

as 

 
0 1 0 0

0 0 1 0
T

 
  
 

, (20) 

it is easy to verify that 0TCM   and rank( TCE )=2. 

The observer gain L  in Eq.(3) can be designed by pole 

assignment method to place eigenvalues of A LC   

into locations  3 2 7 3    . 

 

4.9634 0.0271 0.0188 0.4555

0.0482 4.9900 0.0024 4.0208

0.1002 0.3681 5.2930 1.4200

0 0 1.0000 4.0000

L

 
 


 
 
 
 

. (21) 

We choose the design parameter 1  . The design 

matrix parameter P  can be solved by applying the 

linear matrix inequality toolbox in MATLAB. We can 

obtain  

 
12.5801 43.0987

26.9453 35.0567
H

 
  

 
. (22) 
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We randomly choose initial states of the system. 
The disturbance signal follows Gaussian distribution 

~ (0,0.2)d N . It is assumed that the fault signal ( )f t   
has the following form: 

 
 ( )1 0f t = ， (23) 

 2

0, 0 2 ;
( )

0.02sin 0.03, 2 2
 
 0 .

t s
f t

t s t s
≤ <

=  + ≤ ≤
 (24) 

 
Fig. 1. Fault ( )f t (dotted line) and  fault  reconstruction 
ˆ ( )f t  (solid line). 

 
Fig. 2. Reconstruction error of fault ( )f t . 

Note that the proposed fault reconstruction method 
can effectively estimate the actual additive fault. Fig.1  
shows the performance of the proposed scheme. As 
expected, the fault reconstruction can accurately 
estimate the actual fault. Fig.2 shows the reconstruction 
error ( )f t , which can effectively validate the previous 
theoretical result. 

5. Conclusion 

The fault reconstruction problem for the continuous 
linear time-invariant system is studied in this paper. A 
new disturbance-decoupled fault reconstruction design 
is proposed. Conditions that both the upper boundary of 
faults and the derivative of faults are released. In 
addition, the decoupling technique is used to deal with 
the disturbance input. 
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