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Abstract. Madeira Wine aging processes are slow and costly due to the value invested, the 
storage space and the temperature control. The aging process can be speed up if the wine is 
kept under certain conditions with a higher temperature. To get a high quality wine, an 
important step is the temperature control inside the tanks to get a high quality wine. Nowadays, 
it is mostly done in a manual way. To improve the process, this work describes an automatic 
temperature control method developed and implement, with low cost, inside the tanks of a pilot 
scale tank. It was verified that a Direct Inverse Control is the solution that shows the best 
performance. 
Keywords: wine aging process, controller, automatic control, regression models, direct inverse 
control. 

1 Introduction   
Madeira wine is an important product for the economy of Autonomous Region of Madeira (ARM). An 
important phase to achieve Madeira wine quality is aging, which improves its quality. However, it 
requires monitoring the temperature inside the tanks during storage. This process is costly both due to 
the storage space, temperature requirements and the investment (normally the investment takes 3, 5, 
10 or more years of aging before it is possible to recover it). It has been shown that similar features 
can be achieved in shorter time if the wine is heated at specific and well controlled temperature. Based 
on experiments introduced in the process since the XVIII century, the heating step must be carried out 
at about 45ºC for at least 3 months. 

For this purpose, a pilot scale unit was designed and installed at the University of Madeira (UMa), 
with: 10 stainless steel tanks with a maximum capacity of 200 liters each and a tap water heater with a 
maximum capacity of 150 liters.  

Figure 1 presents an image of the system installed in UMa. In the system, heating is achieved 
through opening a set of valves allowing the passage of hot water in a loop circuit, which meanders 
inside the tanks. These valves can only be commanded through open and close commands and take 
about 2 minutes to switch from one point to the other. The cooling is obtained by closing the valve 
and through ambient heat dissipation. So, the variables used in this work are the valve opening time 
that allows the passage of hot water (as input) and the temperature inside of tanks (as output). The use 
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of valve opening time was the solution found to control the system since it does only allow open and 
close positions. 

 
Figure 1. Picture of the pilot scale system with 10 tanks. 

2 Models for system identification  
The most important part for identification is to represent the dynamics of a system through a 
mathematical model. In this work, two kinds of models were developed: linear and non-linear models. 

2.1 Linear Models 

Mathematically, the Linear Least Squares (LLS) is an approach fitting solution to model data for 
fitting. The LLS minimizes the Sum of Squared Error (SSE) estimate [1]. 

 

Where n is the number of samples and  is error of sample ith given by: 

 
Where yi is the ith value sample of system and  is the ith fitted value provided by the model. 

2.2 Non Linear Models 

The kind of non-linear model developed was an Artificial Neural Network (ANN). ANNs are 
organized in layers and, inside it, there are elements called artificial neurons which process the 
information. Mathematically, the artificial neuron is the sum of the product between the inputs and its 
weights and the result is applied to an activation function where a response is generated [2].  

 
Where y is the neuron output, xk is the kth input, Wk is the weight of kth input and W0 is the bias 

weight. To compute the weight’s value a training algorithm is used (in this work the Levenberg-
Marquardt [3] and Backpropagation [4] algorithms were used). Typically, the training algorithm seeks 
to minimize the Mean Squared Error (MSE) defined by  
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Where n is the number of samples and  is given by equation 2. 

3 The order of the ARX class models  
The AutoRegressive with eXogenous class of linear model (ARX) consists in inserting past values of 
input and output signals into the linear model [5]. Mathematically, the ARX structure of linear models 
is given by: 

 
The parameters na and nb are the orders of the ARX model (na is number of past output terms and 

nb is the number of past input terms), nk is the delay (also called the dead time in the system).  
The classes of non-linear models (such as ANN) are direct extensions of the corresponding linear 

classes. Thus, the same inputs and internal structure is used for an ANN. This kind of solution was 
proposed by several authors [6]. 

4 Control structure 
In this work the following controllers were developed and simulated: Direct Inverse Control (DIC), 
Internal Model Control (IMC), Proportional-Integral-Derivative controller (PID), Proportional-
Integral-Derivative controller with Filter (PIDF), Model Predictive Control (MPC). 

4.1 Direct Inverse Control  

The DIC controller consists in connecting in series the inverse model and the process [7]. Figure 2 
presents a DIC block diagram. If the inverse model has an order superior to one, delayed samples of 
control and output are feedback to the inverse model input [7]. 

4.2 Internal Model Control  

The IMC controller is similar to DIC (i.e. a serial connection of the inverse model and the process). 
However, the inverse model receives a signal that reflects the perturbations that affect the system (i.e. 
the difference between the model and the process). Figure 3 shows a block diagram of IMC controller 
[8]. 

4.3 Proportional-Integral-Derivative controller with and without filter 

The PID is named after its three correcting terms, proportional (Kp), integral (Ki) and derivative (Kd), 
that are added to compute the output. Figure 4 presents a block diagram of a PID controller and 
equation 6 is its transfer function, HPID(s) [9]. The PIDF controller is the next generation to PID 
controller. The PIDF is similar to PID and it is complemented by a low pass filter [9]. Its transfer 
function, HPID, is given by equation 7 where Tf is a filter constant.  
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4.4 Model Predictive Control 

The MPC controller is used to predict the future evolution of the process to optimize the control signal. 
The output of the model combines with the output of the system to give a prediction of the future error 
of the system. This error is fed into an optimizer and it gives the predicted future inputs, which are 
feedback into the main model, restarting the cycle [10]. Figure 5 shows the basic structure of a MPC. 

 
 

Figure 2. Structure for the Direct Inverse Control. The 
signal r(k) is the temperature introduced into the 
controller (i.e. set point), u(k) is the valve opening time 
that allows the passage of hot water, y(k) is the 
temperature inside the tanks 

Figure 3. Structure for the Internal Model Control. 
The signal r(k) is the set point, u(k) is the valve 
opening time, y(k) is the temperature inside of tanks 
and y^(k) is an estimative of the process 

  
Figure 4. Structure for PID control. Figure 5. Structure for the MPC control. 

5 Procedure to develop the controller 

5.1 Sampling period 

According to [11] there is a rule of thumb to establish a relation between the rise time and the 
sampling period, given by: 

 
Where Tr is the time between from 10% until 90% of the rise time, h is the sampling period and Nr 

is the number of samples that the time rise should include. 

 
Figure 6. The rise time of the system for tank nº 1. 
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Figure 6 shows the rise time of the system.  It is starting around of 25ºC because is the temperature 
inside the laboratory where the tanks are located. Analysing figure 10 the following can be verified: 
10% of the rise time (i.e. 22th minute) the temperature is 28.8 ºC and 90% of the rise time (i.e. 365th 
minute) the temperature is 47.6 ºC. 

Assuming that the maximum number of samples that Tr should include according rule of thumb 
(i.e. Nr = 10), the sampling period is around 30 minutes. But, it was verified that after 30 minutes, the 
temperature variation between samples was quite high. To avoid the risk of losing important 
information, it was decided to develop models using a sampling period of 15 and 30 minutes.  

5.2 Development of the models 

The main difficulty to develop an ARX model is to know the na and nb values without increasing the 
complexity unnecessarily. A study about the order of system was performed to identify the best 
solution with less cost to implement. This function represents the price to pay for inaccuracy of 
predictions. Figures 7 and 8 present graphically the loss function of 1000 different combinations using 
the data whose sampling period was of 15 minutes and 30 minutes, respectively. It is verified that data 
with 15 minutes of sampling period presents a lowest cost function value than the data with 30 
minutes of sampling period. So, to develop a model, the best choice is to use the data with 15 minutes 
of sampling period. 
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Figure 7. Loss function to identify the order (sampling period of 30 minutes). 
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Figure 8. Loss function to identify the order (sampling period of 15 minutes). 
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To select the best order, within the data with 15 minutes of sampling period, it has to be taken into 
account the equilibrium between complexity and accuracy [12]. The way to select the order, without 
increasing unnecessarily the complexity, is to find the point where the loss function begins to decrease 
slowly. So, looking at the figures, the best choice is na=2, nb=1 e nk=1. 

Table 1 presents the best fit (in %) between the output target and the output predicted. To calculate 
the best fit, the following equation was used the equation 9. Here, the Ytarget is the output target and 
Ypredict is the output predicted by the model. Comparing all models developed, it is concluded that the 
best options to represent the system is the linear model. 

 

Table 1. Best Fit (%) of all models developed for the different algorithms 

 Best Fit (% ) 
Linear  Model  ARX 95.87% 

Non-Linear  
Model  ARX 

(ANN) 

4 neurons  Levenberg-Marquardt 89.01% 
Backpropagation 87.23% 

7 neurons  Levenberg-Marquardt 80.71% 
Backpropagation 81.20% 

5.3 Step response of the control system 

The parameters to consider in the response step analysis are the rise time, settling time, overshoot, 
peak value, time occurrence of the peak and closed-loop stability. The main requisite for the system is 
to achieve faster the set point temperature. For that, it is necessary to choose the controller with a 
small settling time and small overshoot. 

Table 2 presents the features of the step response of all controllers developed. By analysis of table 
2, it was shown that IMC presents the smaller settling time but, in contrast, it presents an overshoot of 
0.00364. However, the DIC presents the second smaller settling time and it has not overshoot. So, the 
DIC was chosen because it does not present overshoot and its settling time presents a small difference 
when compared with the IMC.  

Table 2. Response step for the controllers PIDF, PID, IMC, MPC and DIC 

5.4 Simulation analysis 

A simulation with all controllers was done to verify and consolidate the decision about the best 
controller to choose. Figure 9 presents a simulation done with each controller where the set point has a 
variation from 5 ºC to 25ºC and vice-versa.  

To determine the best matching between the simulations of the system response using each 
controller and the set point signal, the MSE and the correlation coefficient, R, values are used.  The 
MSE was explained in section 2.2 and it is defined using equation 4. However, the MSE does not 
necessarily reflect whether a line fits the data tightly because the MSE depends on the magnitude of 
the data samples. The correlation coefficient solves that problem because it is a measure which 
indicates the relation between two variables [12].  

Controller  PIDF PID IMC MPC DIC 
Rise time (seconds) 7,20 e+04 7,20 e+04 7,20 e+04 7,20 e+04 7,20 e+04 

Settling time (seconds) 2,38 e+05 2,49 e+05 1,24 e+05 3,60 e+05 1,28 e+05 
Over shoot (% ) 6,6 13,6 0,00364 1 0 

Peak 1,07 1,14 1 1,01 1 
Time occurrence of the peak (seconds) 1,55 e+05 1,51 e+05 2,00 e+05 1,48 e+05 1,80 e+05 

Closed-loop stability Stable Stable Stable Stable Stable 
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Table 3 presents the MSE and R between the set point signal and the simulations of system 
response for each controller. These values show that DIC presents the best solution. 

6 DIC controller implementation in the real system  
The controllers were tested with the real system. Figures 10 to 13 present tests with the response of 
real system using DIC control in tanks 7, 8, 9 and 10 respectively. A graphical interface was also 
developed for the users to easily monitor the temperature and set point. This interface can be seen in 
figures 14 to 17. Figures 14 and 15 show the management side of the graphical interface, where it is 
possible to define set points and monitor the temperature. Figure 16 shows the project management 
part, where the users and tanks can be removed, added and configured. Figure 17 shows an example of 
the reports that can be generated in the interface. 

 

Table 3. MSE and R between the set 
point signal and the simulations of 
system response for each controller 
 

Controll
er  MSE R 

DIC 5,4135 0,9727 
IMC 8,4797 0,9572 
MPC 10,4711 0,9472 
PID 10,0318 0,9500 

PIDF 11,7054 0,9413 
 Figure 9. Simulation for the controllers PIDF, PID, IMC, MPC 

and DIC.9 

  
Figure 10. Comparison between the set point and the 
temperature inside tank 7 (red line: set point; black 
line: temperature inside the tank 7; blue line: error). 

Figure 11. Comparison between the set point and the 
temperature inside tank 8 (red line: set point; black line: 
temperature inside the tank 8; blue line: error). 

  
Figure 12. Comparison between the set point and the 
temperature inside tank 9 (red line: set point; black 
line: temperature inside the tank 9; blue line: error). 

Figure 13. Comparison between the set point and the 
temperature inside tank 10 (red line: set point; black 
line: temperature inside the tank 10; blue line: error). 
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Figure 14. General view of the tank’s management 
interface. 

Figure 15. General view of a specific tank’s 
management interface. 

  
Figure 16. Project management interface Figure 17. Reports interface 

7 Conclusions 
In this work a controller was developed to regulate the temperature inside the tanks to accelerate the 
aging process of Madeira wine. Before developing a model to represent the system’s behavior with 
good performance, data collection was performed. To do that, a sampling period was chosen by 
analyzing the system’s rise time. It was concluded, according rule of thumb, that the sampling period 
should be around 30 minutes. But, models were also developed using 15 minutes as a sampling period 
to make sure that important information was not lost. These showed to have a better performance. 

Then, using the data collected, it was concluded that to get a model, to represent the system 
behavior with good performance, should be used data whose sampling period is 15 minutes and the 
model order was be na=2, nb=1 and nk=1. After that, a linear and non-linear models was developed 
using the data with 15 minutes sampling period collected previously. For this system, a linear model 
presents a better result (95.87% of matching) and it was used to develop the controller.  

Several controllers were simulated. The DIC was chosen because it does not present overshoot and 
its settling time (1.28e+05) presents a small difference when compared with the IMC. Besides, with 
the DIC, there is a good matching between the response of real system and the set point temperature. 
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