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1. Introduction:

Statistical distributions are commonly used to describe real world phenomena. For this feature, the
theory of statistical distribution is widely studied and new distributions are developed. Scientists are
interested in developing more flexible statistical distributions, therefore, many generalized classes
of distributions have been developed and applied to describe various phenomena. A common advan-
tage of these generalized distributions is that they have more parameters. [16] proposed an important
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method of adding a new parameter to an existing distribution. Thus a new family of distributions
called Marshall-Olkin (MO) has been defined. This new family of distributions includes the original
distribution as a special case and it gives more flexibility to model. [20] introduced a detailed study
about the physical interpretation of the MO family.

Weibull distribution is a well known distribution that has many applications in survival analysis
and reliability theory. Its importance appears since Weibull distribution considered as a general-
ization of many other distributions such as: Exponential, Rayleigh and generalized extreme value
distributions. Weibull distribution has many nice properties, among others, its hazard rates can be
decreasing, constant or increasing. This is one of the attractive properties that make the Weibull
distribution so applicable. Weibull distribution has been extensively used over the past decades for
modeling data in reliability, engineering and biological studies.

The need for extended form of the Weibull distribution is important in many areas. Some
extended forms of Weibull distribution and its applications were referred to [24], [3], [21] and [23].
The extension idea is simply based on adding more parameters to a well-defined distribution pro-
vides more flexible new classes of distributions.

Let F(x) = 1−F(x) denote the survivor function of a continuous random variable X and f (x) =
dF(x)

dx be the probability density function associated with the cumulative distribution function (cdf)
F(x), then the MO extended distribution has the survival function

G(x) =
αF(x)

F(x)+αF(x)
,−∞ < x < ∞, α > 0, (1.1)

where α = 1−α. It is clear that Eq.(1.1) provides a method to obtain a new distribution from an
existing one. When α = 1, G(x) = F(x), it is readily seen that F(x) is a special case of G(x).

The probability density function (pdf) corresponding to Eq. (1.1) takes the form

g(x) =
α f (x)

(1−αF(x))2
,−∞ < x < ∞, α > 0.

Some special cases of Eq. (1.1) were recently studied in literature. [5] considered Pareto distri-
bution, [18] considered gamma distribution while [6] took lomax distribution. [1] studied the infer-
ences of Marshall-Olkin exponential distribution and [19] studied the moments of order statistics
based on Marshall-Olkin exponential distribution.

[8] and [7] studied a new generalization of the geometric and normal distributions using the MO
idea. [4] considered the MO extended Weibull distribution with shape and scale parameters, they
studied some of its mathematical properties as well as estimation of the model parameters. [17]
discussed the Marshall-Olkin extended Weibull family of distributions, some structural properties
including moments and order statistics were discussed. [2] considered Marshall-Olkin exponential
distribution and he introduced a comparison between different methods of methods of point estima-
tion of the distribution parameters.

In this paper we introduce MO extended Weibull distribution (MOEW). Some structural prop-
erties of the density function and hazard rate function are studied. Our goal is to introduce differ-
ent methods of point estimation for the unknown parameters. Numerical methods are used to make
comparison between these methods, also we study the behavior of estimated parameters for different
sample sizes and for different parameter(s) values. Basically we compare, the maximum likelihood
estimators, moment estimators, estimators based on percentiles and the least square estimators by
using simulation techniques.
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The organization of this paper is as follows. In section 2, we introduce MOEW density func-
tion and show that it can be expressed as a linear combination of Weibull density function. The
hazard rate function for the MOEW is given in section 3. Section 4 describes the methods of point
estimation. Some characterization results are presented in section 5, while numerical results and
simulation are provided in section 6.

2. The probability density function

Consider Weibull distribution with probability density function (pdf) given by

f (x;θ ,β ,µ) =
θ

β
(
x−µ

β
)θ−1 exp[−(x−µ

β
)θ ], x≥ µ,

where θ > 0 is the shape parameter,β > 0 is a scale parameter and µ ∈R is the location param-
eter. The cumulative distribution function (cdf) is given by

F(x;θ ,β ,µ) = 1− exp[−(x−µ

β
)θ ],

and the survival function is F(x;θ ,β ,µ) = exp[−( x−µ

β
)θ ]. Using Eq. (1.1), the survival function of

Marshall-Olkin extended Weibull distribution (MOEW) is given by

G(x;α,θ ,β ,µ) =
α exp[−( x−µ

β
)θ ]

1−α exp[−( x−µ

β
)θ ]

, (2.1)

the corresponding pdf of MOEW is

g(x;α,θ ,β ,µ) =

αθ

β
( x−µ

β
)θ−1 exp[−( x−µ

β
)θ ]

(1−α exp[−( x−µ

β
)θ ])2

, (2.2)

where α > 0,θ > 0,β > 0,µ ∈ R, and x≥ µ .
For 0 < α < 1, using binomial expansion of the denominator we can rewrite it as:

(1−α exp[−(x−µ

β
)θ ])−2 =

∞

∑
j=0

( j+1)α j exp[− j(
x−µ

β
)θ ], (2.3)

where Γ(.) is the gamma function. Applying the expansion (2.3) in (2.2), yields

g(x;θ ,β ,µ) = α

∞

∑
j=0

θ

β ∗
α

j exp[−(x−µ

β ∗
)θ ](

x−µ

β ∗
)θ−1

=
∞

∑
j=0

η j fWE(x;α,θ ,β ∗,µ), (2.4)

where fWE(x;θ ,β ∗,µ) is the pdf of Weibull distribution with parameters θ ,β ∗ and µ, where
β ∗ = β

( j+1)1/θ
, η j = αα

j.
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For α > 1, we can use similar argument as in Eq. (2.3), and after some algebraic manipulations
we can obtain

g(x;α,θ ,β ,µ) =
∞

∑
j=0

v j fWE(x;θ ,β ∗,µ), (2.5)

where v j =
(−1) j

α( j+1) ∑
∞
k= j(k+1)

(k
j

)
(1− 1

α
)k. Note that ∑

∞
j=0 η j = ∑

∞
j=0 v j = 1.

Hence the MOEW density function can be expressed as an infinite linear combination of Weibull
density function. Therefore expression (2.4) and (2.5) can be used to find many mathematical prop-
erties such as the moments of MOEW distribution.

3. The Hazard Rate Function

Hazard rate function or failure rate is important in survival analysis as well as reliability theory. The
hazard rate function for MOEW is of the form

h(x;α,θ ,β ,µ) =

θ

β
( x−µ

β
)θ−1

1−α exp[−( x−µ

β
)θ ]

, for x≥ µ.

In order to determine the shape of h(x;α,θ ,β ,µ) it is quite enough to determine the shape of
log h(x;α,θ ,β ,µ), the first derivative of log h(x;α,θ ,β ,µ) is

d logh(x;α,θ ,β ,µ)

dx
=

s(x)
(x−µ)(1−α exp[−( x−µ

β
)θ ])

,

where s(x) = (1−α exp[−( x−µ

β
)θ ])(θ −1)−θα exp[−( x−µ

β
)θ ]( x−µ

β
)θ .

The possible shapes of the hazard rate function are:
1- If 0 < θ < 1, then s(x) is negative for x ≥ µ, and hence the hazard function is a decreasing

function with h(µ) = ∞ and h(∞) = 0.
2- If θ > 1,0 < α < 1, then s(x) has two roots x0 and x1. The hazard function is increasing on

(µ,x0), decreasing on ( x0,x1) and increasing on (x1,∞) with h(µ) = 0 and h(∞) = ∞.

3- If θ > 1,α > 1, then s(x) is positive. The hazard rate is increasing with h(µ) = 0 and h(∞) =

∞.

4. Point Estimation

In this section we introduce four different methods of point estimation for the parameters of MOEW
distribution. The asymptotic properties are discussed for the maximum likelihood and method of
moment estimators. In section 6, numerical techniques will be used to obtain the estimated values
of parameters, then a comparison is done between these estimated values to decide which method
is the best.

4.1. Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is widely used in inferential statistics as it has many
nice properties such as invariance, consistency and normal approximation property. It depends basi-
cally on maximizing the likelihood function of MOEW distribution. Let X1,X2, ...,Xn be a random
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sample from MOEW, then the log-likelihood function for the vector of parameters γ = (α,θ ,β ,µ)

can be expressed as

`(γ) = n log(
αθ

β
)−

n

∑
i=1

(
xi−µ

β
)θ +(θ −1)

n

∑
i=1

log(
xi−µ

β
)−2

n

∑
i=1

log(1−α exp[−(xi−µ

β
)θ ]).

(4.1)
From the above log-likelihood equation we compute the derivatives with respect to the parame-

ter vector γ . Since x ≥ µ , then the MLE of the parameter µ is assumed to be x(1), where x(1) is the
first order statistic. So, we need to solve the following three normal equations after equating them
to zero:

f1(α,θ ,β ) =
∂`(γ)

∂α
=

n
α
−2

n

∑
i=1

exp[−( xi−µ

β
)θ ]

1−α exp[−( xi−µ

β
)θ ]

f2(α,θ ,β ) =
∂`(γ)

∂θ
=

n
θ
−

n

∑
i=1

log(
xi−µ

β
)

(
(
xi−µ

β
)θ −1

)
−2α

n

∑
i=1

exp[−( xi−µ

β
)θ ]( xi−µ

β
)θ log( xi−µ

β
)

1−α exp[−( xi−µ

β
)θ ]

f3(α,θ ,β ) =
∂`(γ)

∂β
= −nθ

β
+

θ

β

n

∑
i=1

(
xi−µ

β
)θ +

2θα

β

n

∑
i=1

exp[−( xi−µ

β
)θ ]( xi−µ

β
)θ

1−α exp(−( xi−µ

β
)θ )

The solution for the above normal equations is not an easy task as they have not an explicit
solution. The MLE’s can be obtained numerically using Newton-Raphson method to solve the above
normal equation. Many numerical methods were used in the literature to solve such system of non-
linear equations. In this paper, we use the Newton-Raphson method which is one of the mostly used
methods. This method depends on the following iterated equationα(i+1)

θ (i+1)

β (i+1)

=

α(i)

θ (i)

β (i)

−


∂ f1
∂α

∂ f1
∂θ

∂ f1
∂β

∂ f2
∂α

∂ f2
∂θ

∂ f2
∂β

∂ f3
∂α

∂ f3
∂θ

∂ f3
∂β


(γ)

×

 f1(γ)

f2(γ)

f3(γ)

 .

The above iterated iterated equation depends on the choice of the initial point (α(0),θ (0),β (0)). We
use Mathematica package to produce the new values (iterated values) for α , θ and β based on their
past (or initial) values until they converge to their MLE’s results.

The normal approximation of the MLE of vector parameter γ can be used to construct approxi-
mate confidence intervals and for testing hypotheses on the parameters α,θ ,β and µ.

From the asymptotic property of the MLE we have that
√

n(γ̂ − γ) d−→ N4(0,K−1(γ)), where
K(γ) is the unit expected information matrix and K(γ) = limn→∞

1
n In(γ). Here In(γ) is the observed

information matrix evaluated at γ̂. The observed information matrix is given by

In(γ) =−


E(`αα) E(`αθ ) E(`αβ ) E(`αµ)

E(`θα) E(`θθ ) E(`θβ ) E(`θ µ)

E(`βα) E(`βθ ) E(`ββ ) E(`β µ)

E(`µα) E(`µθ ) E(`µβ ) E(`µµ)

 .
The expected values of the second derivatives can be found by using some methods of inte-

gration. Now, without loss of generality, we assume that β = 1. The MLE of α , when the other
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parameters are known is obtained by solving the non-linear equation

n
α̂

= 2
n

∑
i=1

exp[−( xi−µ

β
)θ ]

1− α̂ exp[−( xi−µ

β
)θ ]

. (4.2)

The MLE’s of β and θ can be obtained directly by maximizing (4.1) with respect to β , θ , respec-
tively, given that other parameters are known.

4.2. Method of Moment Estimation

In order to use method of moment estimators (MME), it is essential to compute the moments of
MOEW distribution. We use the idea of binomial expansion in Eqs. (2.4) and (2.5) in order to
obtain the following:

E(Xn) =
∞

∑
j=0

w jE(Y n
j ), w j =

{
η j 0 < α < 1

ν j α > 1,
(4.3)

where Yj ∼ fWE(x;θ ,β ∗,µ). So we divide our work into two cases:
Case (a): 0 < α < 1: The expected value in Eq. (4.3) is written as

E(Xn) =
∞

∑
j=0

η jE(Y n
j ). (4.4)

The nth moment for a three parameter Weibull distribution was given by [23]. Using their for-
mula we can rewrite Eq. (4.4) as

E(Xn) =
∞

∑
j=0

n

∑
i=0

η j

(
n
i

)
µ

i

(
β

( j+1)1/θ

)(n−i)

Γ(1+
n− i

θ
).

Using the above formula we can find the first four moments. We equate sample moments with the
population moments of MOEW to obtain the following four equations:

m1 = X = E(X) = µ +
α

α
βΓ(1+

1
θ
)ploy log(

1
θ
,α), (4.5)

m2 = E(X2) = µ
2 +2

α

α
β µΓ(1+

1
θ
)ploy log(

1
θ
,α)+

α

α
β

2
Γ(1+

2
θ
)ploy log(

2
θ
,α), (4.6)

m3 = E(X3) = µ
3 +3

α

α
β µ

2
Γ(1+

1
θ
)ploy log(

1
θ
,α)+3

α

α
β

2
µΓ(1+

2
θ
)ploy log(

2
θ
,α)

+
α

α
β

3
Γ(1+

3
θ
)ploy log(

3
θ
,α), (4.7)

m4 = E(X4) = µ
4 +4

α

α
β µ

3
Γ(1+

1
θ
)ploy log(

1
θ
,α)+12

α

α
β

2
µ

2
Γ(1+

2
θ
)ploy log(

2
θ
,α)

+12
α

α
β

3
µΓ(1+

3
θ
)ploy log(

3
θ
,α)+4

α

α
β

4
Γ(1+

4
θ
)ploy log(

4
θ
,α), (4.8)
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where polylog(s,z) is a special function Lis(z) which is the polylogarithm function defined by the

power series Lis(z)=
∞

∑
k=1

zk

ks .

Case (b): α > 1: In this case the expected value in Eq. (4.3) can be written as

E(Xn) =
∞

∑
j=0

ν jE(Y n
j ) =

∞

∑
j=0

n

∑
i=0

ν j

(
n
i

)
µ

i

(
β

( j+1)1/θ

)n−i

Γ(1+
n− i

θ
)

=
∞

∑
j=0

n

∑
i=0

∞

∑
k= j

(−1) j

α( j+1)
(k+1)

(
k
j

)
(1− 1

α
)k
(

n
i

)
µ

i

(
β

( j+1)1/θ

)n−i

Γ(1+
n− i

θ
).

Using this formula and by applying the same argument used for case 0 < α < 1, we can find the
first four moments for case α > 1. In fact, after some mathematical manipulation, we find that the
first four moment for this case are the same as the first four moments for case 0 < α < 1 given in
Eq.’s (4.5)-(4.8), respectively. We use numerical methods to solve the above four equations in order
to estimate the needed parameters.

Sometimes population and sample variance can be used to obtain the second moment instead of
Eq. (4.6), hence

S2 = σ
2 =

α

α
β

2
Γ(1+

2
θ
)ploy log(

2
θ
,α)−

(
α

α

)2
β

2
Γ

2(1+
1
θ
)(ploy log(

1
θ
,α))2. (4.9)

Now we discuss the asymptotic distribution of the MME’s of α,θ ,β and µ, let us denote γ =

(α,θ ,β ,µ) and let

f1(γ) = X−µ− α

α
βΓ(1+

1
θ
)ploy log(

1
θ
,α),

f2(γ) = S2− α

α
β

2
Γ(1+

2
θ
)ploy log(

2
θ
,α)+

(
α

α

)2
β

2
Γ

2(1+
1
θ
)(ploy log(

1
θ
,α))2,

f3(γ) = E(X3)−µ
3−3

α

α
β µ

2
Γ(1+

1
θ
)ploy log(

1
θ
,α)−3

α

α
β

2
µΓ(1+

2
θ
)ploy log(

2
θ
,α)−

α

α
β

3
Γ(1+

3
θ
)ploy log(

3
θ
,α),

f4(γ) = E(X4)−µ
4−4

α

α
β µ

3
Γ(1+

1
θ
)ploy log(

1
θ
,α)−12

α

α
β

2
µ

2
Γ(1+

2
θ
)ploy log(

2
θ
,α)−

12
α

α
β

3
µΓ(1+

3
θ
)ploy log(

3
θ
,α)−4

α

α
β

4
Γ(1+

4
θ
)ploy log(

4
θ
,α).

Using Taylor expansion of f (γ̂MM) about the true value of γ = (α,θ ,β ,µ), where f (γ) =
( f1(γ), f2(γ), f3(γ), f4(γ)), we obtain

f (γ̂MM)− f (γ) = [α̂MM−α, θ̂MM−θ , β̂MM−β , µ̂MM−µ]


( ∂ f1

∂α
) ( ∂ f2

∂α
) ( ∂ f3

∂α
) ( ∂ f4

∂α
)

( ∂ f1
∂θ

) ( ∂ f2
∂θ

) ( ∂ f3
∂θ

) ( ∂ f4
∂θ

)

( ∂ f1
∂β

) ( ∂ f2
∂β

) ( ∂ f3
∂β

) ( ∂ f4
∂β

)

( ∂ f1
∂ µ

) ( ∂ f2
∂ µ

) ( ∂ f3
∂ µ

) ( ∂ f4
∂ µ

)


γ=γ

,
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where γ is a point between γ̂MM and γ. Its clear that as n→ ∞, γ̂MM → γ and γ → γ. The
derivatives mentioned in the above matrix can be obtained simply, let us consider the first one as an
example:

∂ f1

∂α
=

βΓ(1+1/θ)

α
2 (−α poly log(−1+1/θ ,α)−α poly log(1/θ ,α)+α poly log(−1+1/θ ,α)) ,

where polyΓ(z) = ψ(z) = d
dz ln(Γ(z)) = Γ′(z)

Γ(z) and poly log(1,0)(a/θ ,α) = −θ 2

a
∂ poly log(a/θ ,α)

∂θ
.

Using central limit theorem we obtain
√

n(X−E(X))→ N(0,σ2) and

√
n(S2−E(S2))→ N(0,

(n−1)2m4− (n−1)(n−3)m2
2

n3 ).

Therefore

[
√

n(X−E(X)),
√

n(S2−E(S2))]→ N(0,

[
σ2 Cov(X ,S2)

Cov(X ,S2)
(n−1)2m4−(n−1)(n−3)m2

2
n3

]
,

where Cov(X ,S2) = n
n−1

(
m3−2m1m2 +m1σ2 +m3

1

)
−m1(m2−m2

1).

As a special case, we assume that µ = 0 and σ = 1, then

E(Xk) =
∫

∞

0
xk

αθxθ−1 e−xθ

(1−
−
αe−xθ

)2
dx

=
∞

∑
k=o

∫
∞

0
xm

αθxθ−1(k+1)(
−
α)ke−(k+1)xθ

dx

Using the substitution (k+1)xθ = t, we conclude E(Xk) = ∑
∞
k=o(

1
k+1)

m
θ α(

−
α)kΓ(1+ m

θ
).

4.3. Estimators Based on Percentiles

This method was introduced by [11] and [12], which can be used when the data has a distribu-
tion function with closed form. The idea depends on estimating the unknown parameters by fitting
straight line to the theoretical percentile points obtained from the distribution function and the sam-
ple percentile points. [11] and [12] found that this method can be useful in Weibull and exponential
distributions. In this section we use the same technique for the MOEW distribution.

Consider the (cdf) of MOEW distribution

1−G(x;γ) =
α

exp[( x−µ

β
)θ ]−α

,

where γ = (α,θ ,β ,µ). Therefore

x = β

[
ln(

α

1−G(x;γ)
+1−α)

]1/θ

+µ.

Let X(i) denotes the ith order statistic from a sample of size n. If pi denotes some estimate of
G(x(i);γ), then the estimate of γ = (α,θ ,β ,µ) can be obtained by minimizing

λ =
n

∑
i=1

(
x(i)−µ−β

[
ln(

α

1− pi
+1−α)

]1/θ
)2

. (4.10)
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This method is used by several authors, see for example [2], [9] and [14]. Since Eq. (4.10) is a non-
linear equation it is appropriate to use non-linear optimization technique to find the minimum values
of the needed estimators. These estimators are called percentile estimators (PCE’s). It is possible to
use several pi’s as estimators of G(x(i)). For example pi =

i
n+1 is the most used estimator of G(x(i)),

as i
n+1 is the expected value of G(x(i)). In this paper we also use pi =

i
n+1 . Some of the other choices

of pi’s are pi = (i− (3/8))/(n+(1/4)) or pi = (i− (1/2))/n, see [15].
We assume that α is known, then the PCE’s of (θ ,β ,µ) can be obtained by taking partial

derivatives with respect to the other three parameters respectively. Let πi = ln( α

1−pi
+ 1−α), then

the three normal equations that should be solved are:

∂λ

∂ µ
= −2

n

∑
i=1

(
x(i)−µ−β (πi)

1/θ
)

(4.11)

∂λ

∂β
= −2

n

∑
i=1

(
x(i)−µ−β (πi)

1/θ
)
(πi)

1/θ (4.12)

∂λ

∂θ
= 2

β

θ 2

n

∑
i=1

(
x(i)−µ−β (πi)

1/θ
)
(πi)

1/θ × ln(πi). (4.13)

By solving these normal equations after equating them to zero, we have
n
∑

i=1
x(i) = nµ +

β
n
∑

i=1
(πi)

1/θ , hence µ̂PCE = x− β

n

n
∑

i=1
(πi)

1/θ .

It is easy to find µ̂PCE when β and θ are known. Now, when µ and θ are known and if we denote
G(x) = G(x;α,β ,θ ,µ), then

α

exp
(

x−µ

β

)θ
−α = 1−G(x),

which is equivalent to β = x−µ(
ln
[

α

1−G(x)+1−α

])1/θ
. Therefore, the PCE of β can be calculated by mini-

mizing

n

∑
i=1

β −
x(i)−µ(

ln
[

α

1−pi
+1−α

])1/θ


2

with respect to β . Hence, the PCE of β is given by

β̂PCE =

∑
n
i=1

x(i)−µ(
ln
[

α

1−pi
+1−α

])1/θ

n
. (4.14)

Similarly, when µ and β are known, the PCE of θ is found to be

θ̂PCE =

∑
n
i=1

ln
(

ln
[

α

1−pi
+1−α

]
x(i)
)

ln
[ x(i)−µ

β

]
n

. (4.15)
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Without loss of generality, we can assume β = 1 and µ and θ are known. If we denote G(x) =
G(x;α,1,θ ,µ) then α

1−G(x) −α = e(x−µ)θ −1 or equivalently

α =
(e(x−µ)θ −1)(1−G(x))

G(x)
.

Therefore, the PCE of α can be obtained by minimizing

n

∑
i=1

(
α− (e(x(i)−µ)θ −1)(1− pi)

pi

)2

with respect to α . In this case the PCE of α is found to be

α̂PCE =
∑

n
i=1

(e
(x(i)−µ)θ−1)(1−pi)

pi

n
. (4.16)

Interestingly, all the PCE’s estimators have a closed forms when assuming that the other parameters
are known.

4.4. Least Squares Estimators and Weighted Least Squares Estimators

The method of least squares estimate or regression estimate was first suggested by [22] to estimate
the parameters of beta distribution. The method can be described as follows: Suppose Y1,Y2, ...,Yn

is a random sample of size n from a distribution function G(.) and Y(1),Y(2), ...,Y(n) denote the order
statistics of the observed sample. Consider G(Y(i)) to be the distribution function of the ith order
statistics from the observed sample, then G(Y(i)) has U(0,1) distribution. Therefore we have

E(G(Y(i))) =
i

n+1
, Var(G(Y(i))) =

i(n− i+1)
(n+1)2(n+2)

, (4.17)

and

Cov(G(Y(i)),G(Y( j))) =
i(n− j+1)

(n+1)2(n+2)
, f or i < j. (4.18)

See, for example, [10]. The least squares estimators of the unknown parameters can be obtained
by minimizing

n

∑
i=1

(
G(Y(i))−

i
n+1

)2

with respect to the unknown parameters α,β ,θ ,µ and hence minimizing

n

∑
i=1

 e(
Y(i)−µ

β
)θ

−1

e(
Y(i)−µ

β
)θ

− (1−α)

− i
n+1

2

. (4.19)

Numerically, we can obtain the least squares estimate of the four parameters which are denoted
by α̂LSE , β̂LSE , θ̂LSE , µ̂LSE .

Journal of Statistical Theory and Applications, Vol. 16, No. 1 (March 2017) 1–17
___________________________________________________________________________________________________________

10



For the weighted least square estimators of the unknown parameters we need to minimize

n

∑
i=1

1
Var(G(Y(i)))

(
G(Y(i))−

i
n+1

)2

.

Equivalently, the weighted least square estimators can be evaluated by minimizing

n

∑
i=1

(n+1)2(n+2)
i(n− i+1)

 e(
Y(i)−µ

β
)θ

−1

e(
Y(i)−µ

β
)θ

− (1−α)

− i
n+1

2

, (4.20)

to obtain what are denoted by α̂WLSE , β̂WLSE , θ̂WLSE , µ̂WLSE . Numerical argument are needed to
evaluate the so obtained estimators.

5. Some Characterization Results

In this section, we present four characterization results based on MOEW distribution. To prove the
main results, we need to consider some Lemmas.

Lemma 5.1. Suppose that X is an absolutely continuous random variable and its cdf F(x) with
F(0) = 0 and F(x) > 0 for all x > 0. Assume that f (x) is the pdf of X and f ′(x) exists for all
x > 0. For a continuous function g(x) defined on 0 < x < ∞ with finite E(g(X)). If E(g(X) | X ≥
x) = h(x)r(x), where h(x) is differentiable in x > 0 and r(x) = f (x)

1−F(x) is the hazard rate, then

f (x) = cexp(−
∫ x

0
g(u)+h′(u)

h(u) du), where c is determined by the condition
∫

∞

0 f (x)dx = 1.

Proof. Let h(x) =
∫

∞

x g(u) f (u)du
f (x) , then

∫
∞

x g(u) f (u)du = f (x)h(x). Differentiating both sides, we
obtain −g(x) f (x) = f (x)h′(x)+ f ′(x)h(x). After some simplifications, we have

f ′(x)
f (x)

=−g(x)+h′(x)
h(x)

.

Integrating both sides of the above equation, we obtain f (x) = cexp(−
∫ x

0
g(u)+h′(u)

h(u) du) and c is
determined by the condition

∫
∞

0 f (x)dx = 1.

Lemma 5.2. Suppose that X is an absolutely continuous random variable and its cdf F(x) with
F(0) = 0 and F(x) > 0 for all x > 0. Assume that the pdf of X is f (x) and f ′(x) exists for all
x > 0. For a a continuous function g(x) defined on 0 < x < ∞ with finite E(g(X)). If E(g(X) |
X ≤ x) = h(x)τ(x), where h(x) is a differentiable function in x > 0 and τ(x) = f (x)

1−F(x) , then f (x) =

cexp(−
∫ x

0
g(u)+h′(u)

h(u) du) and c is determined by the condition
∫

∞

0 f (x)dx = 1.

Proof. We have h(x) =
∫ x

0 g(u) f (u)du
f (x) , then

∫ x
0 g(u) f (u)du = f (x)h(x). Differentiating both sides, we

obtain g(x) f (x) = f (x)h′(x)+ f ′(x)h(x). After some simplifications, we have

f ′(x)
f (x)

=−g(x)−h′(x)
h(x)

.

Integrating both sides of the above equation, we obtain f (x) = cexp(−
∫ x

0
g(u)−h′(u)

h(u) du), where c is
determined by the condition

∫
∞

0 f (x)dx = 1.
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Theorem 5.1. Suppose that X is an absolutely continuous random variable and its cdf F(x) with
F(0) = 0 and F(x)> 0 for all x > 0. Assume that the pdf of X is f (x) and f ′(x) exists for all x > 0
and E(Xm) exists for m≥ 1. Then

E(Xm|X ≥ x) = h(x)r(x), where r(x) = f (x)
1−F(x) and h(x) = (1−

−
αe−xθ

)2

cαxθ−1e−xθ ∑
∞
k=0(

1
k+1)

m
θ Γc

(k+1)xθ (
m+θ

θ
)

where Γc
α(β ) =

∫
∞

α
xβ−1e−xdx if and only if f (x) = cαxθ−1e−xθ

(1−
−
αe−xθ

)2
for 0 < α ≤ 1.

Proof. We have

f (x)h(x) =
∫

∞

x
um θαuθ−1e−uθ

(1−
−
αe−uθ

)2
du

=
∫

∞

x
um

θαuθ−1e−uθ
∞

∑
k=0

(k+1)(
−
α)ke−kuθ

du

=
∞

∑
k=0

(
1

k+1
)

m
θ Γ

c
(k+1)xθ (

m+θ

θ
),

where Γc
α(β ) =

∫
∞

α
xβ−1e−xdx. Thus

h(x) =
(1−

−
αe−xθ

)2

cαxθ−1e−xθ

∞

∑
k=0

(
1

k+1
)

m
θ Γ

c
(k+1)xθ (

m+θ

θ
).

Suppose

h(x) =
(1−

−
αe−xθ

)2

cαxθ−1e−xθ

∞

∑
k=0

(
1

k+1
)

m
θ Γ

c
(k+1)xθ (

m+θ

θ
),

then

xm +h′(x)
h(x)

=
θ −1

u
−θxθ−1− 2

−
αθxθ−1θe−uθ

1−
−
αe−uθ

.

Using Lemma 5.1, we conclude

f ′(x)
f (x)

=
θ −1

u
−θxθ−1− 2

−
αθxθ−1θe−uθ

1−
−
αe−uθ

.

By integrating the above equation, we obtain f (x) = c cαxθ−1e−xθ

(1−
−
αe−xθ

)2
, where c is a constant. Using the

condition
∫

∞

0 f (x)dx = 1, we obtain

f (x) =
cαxθ−1e−xθ

(1−
−
αe−xθ

)2
,0 < α ≤ 1.

Theorem 5.2. Suppose that X is an absolutely continuous random variable and its cdf F(x) with
F(0) = 0 and F(x) > 0 for all x > 0. Assume that the pdf of X is f (x) and f ′(x) exists for all
x > 0 and assume E(Xm) exists for m ≥ 1. Then E(Xm|X ≤ x) = h(x)τ(x), where τ(x) = f (x)

F(x) and
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h(x) = (1−
−
αe−xθ

)2

cαxθ−1e−xθ ∑
∞
k=0(

1
k+1)

m
θ Γ(k+1)xθ (m+θ

θ
), where Γα(β ) =

∫
α

0 xβ−1e−xdx if and only if f (x) =

cαxθ−1e−xθ

(1−
−
αe−xθ

)2
,0 < α ≤ 1.

Proof. We have

f (x)h(x) =
∫ x

o
um θαuθ−1e−uθ

(1−
−
αe−uθ

)2
du

=
∫ x

o
um

θαuθ−1e−uθ
∞

∑
k=0

(k+1)(
−
α)ke−kuθ

du

=
∞

∑
k=0

(
1

k+1
)

m
θ Γ(k+1)xθ (

m+θ

θ
),

where Γα(β ) =
∫

α∞

0 xβ−1e−x(k+1)xθ

dx. Thus

h(x) =
(1−

−
αe−xθ

)2

cαxθ−1e−xθ

∞

∑
k=0

(
1

k+1
)

m
θ Γ(k+1)xθ (

m+θ

θ
)

Suppose now that

h(x) =
(1−

−
αe−xθ

)2

cαxθ−1e−xθ

∞

∑
k=0

(
1

k+1
)

m
θ Γ

c
(k+1)xθ (

m+θ

θ
),

then

xm−h′(x)
h(x)

=
θ −1

u
−θxθ−1− 2

−
αθxθ−1θe−uθ

1−
−
αe−uθ

.

Using Lemma 5.2, we conclude that

f ′(x)
f (x)

=
θ −1

u
−θxθ−1− 2

−
αθxθ−1θe−uθ

1−
−
αe−uθ

.

By integrating the above equation, we obtain f (x) = c cαxθ−1e−xθ

(1−
−
αe−xθ

)2
, where c is a constant. Using

the condition
∫

∞

0 f (x)dx = 1, we obtain

f (x) =
cαxθ−1e−xθ

(1−
−
αe−xθ

)2
,0 < α ≤ 1.

Based on Eq.’s (2.1) and (2.2) and characterization purpose of this distribution, we can assume
w.l.o.g µ = 0 and β = 1.
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6. Numerical Computations and Discussions

In this section, we perform some numerical computations to compare the performances of the dif-
ferent estimators proposed in the previous sections. We perform an extensive simulation study to
compare the performances of the different methods in the sense of bias and mean square error
(MSE) for different sample sizes and for different parameter values. The generation of the MOEW
can be easily obtained through the transformation X = µ +β (log( α

(1−U) +1−α))1/θ , where U is a
uniform distribution deviate on (0,1). Mathematica 7 codes are used for generating the MOEW ran-
dom variables and for solving the non-linear equations as well as for computing the minimization
or maximization of the related functions.

Since β is the scale parameter and all the estimators are scale invariant, we take β = 1 in all
cases considered. We consider various choices of the parameters α , θ , µ and sample sizes n= 10,50
and 100.

We compute the average relative biases and average relative MSE’s over 10,000 runs. This
number of runs will give the accuracy in the order ±(10,000)−5 =±0.01 (see [13]). Therefore, we
report all the results up to three decimal places.

First we consider the estimation of α when other parameters are known. If β , θ and µ are
known, the MLE’s and PCE’s of α can be obtained directly from (4.2) and (4.16) respectively.
The MLE’s of β and θ can be obtained directly from Eq. (4.1). The PCE’s of β , θ and µ can
be computed directly from Eq. (4.10). The MME’s of all parameters can be obtained by solving
the non-linear equation (4.5) when other parameters are known. The LSE’s and WLSE’s can be
obtained by minimizing (4.19) and (4.20), respectively, with respect to the needed parameter only.
If α̂ is an estimate, then we present the average value of (α̂/α) and the average MSE of (α̂/α).
The relative average bias and relative average MSE of (γ̂/γ), where γ̂ is an estimate of γ , are
defined, respectively, as follows: RelativeBias(γ̂/γ) = (1/k)∑

k
i=1(γ̂i/γ) and RelativeMSE(γ̂/γ) =

(1/kγ2)∑
k
i=1(γ̂i− ρ)2, where ρ = γRelativeBias(γ̂/γ) and k is the number of iterations. We are

calculated the results for α = 0.2,0.4,0.8, for θ ,µ = 0.5,1.0,2.0 and for n = 10,50 and 100. The
results are presented in 12 different tables. But since the number of tables are very large, we present
only 4 tables each of them when α = 0.8. The other tables are to be given upon request from the
corresponding author of this paper. For each method, the average value of (α̂/α) is given in each
box and the corresponding MSE is reported within parenthesis.

It is observed from Table 1 that all of the estimators usually overestimate α for small values of
α , (α ≤ 0.4). For α > 0.4, most of the estimators tends to be underestimates α for µ > 1. It is also
observed that all estimates decrease as the value of µ increase. One can also observe that for each
estimation method, the average relative MSE’s decreases as the sample size increases and also as
the value of α increases.

It is observed from Table 2 that all of the estimators usually overestimate β for all values of
α except PCE’s that appear to be always underestimate. All estimates tend to be underestimate for
large values of µ and large sample sizes. It is also observed that all estimates decrease as the value
of µ increase. One can also observe that for each estimation method, the average relative MSE’s
decreases as the sample size increases and also as the values of α and µ increase.

It is observed from Table 3 that all of the estimators usually underestimate θ for all values of α

except MLE’s that tend to be underestimate for α > 0.4. All estimates tend to be underestimate for
large values of µ and large sample sizes. It is also observed that all estimates decrease as the value

Journal of Statistical Theory and Applications, Vol. 16, No. 1 (March 2017) 1–17
___________________________________________________________________________________________________________

14



Table 1. Average relative estimators and average relative MSE’s of α .

(α,θ ,µ)

n method (0.8,0.5,0.5) (0.8,0.5,1.0) (0.8,0.5,2.0) (0.8,1.0,0.5) (0.8,1.0,1.0) (0.8,1.0,2.0)
10 MLE 1.019(0.178) 1.013(0.157) 0.791(0.140) 1.139(0.117) 1.009(0.098) 0.864(0.065)

MME 1.412(0.335) 1.183(0.313) 0.823(0.245) 1.310(0.381) 1.273(0.194) 0.628(0.069)
PCE 1.373(0.614) 1.182(0.322) 0.916(0.217) 1.053(0.299) 0.887(0.273) 0.863(0.232)
LSE 1.993(0.368) 1.008(0.202) 0.817(0.187) 1.267(0.293) 1.234(0.256) 0.872(0.162)

WLSE 1.834(0.293) 1.003(0.192) 0.783(0.150) 1.189(0.284) 1.163(0.245) 0.806(0.153)
50 MLE 1.013(0.148) 1.007(0.138) 0.762(0.127) 1.112(0.076) 1.002(0.049) 0.802(0.032)

MME 1.387(0.232) 1.095(0.128) 0.887(0.111) 1.816(0.296) 1.649(0.163) 0.802(0.053)
PCE 1.367(0.239) 1.217(0.263) 1.128(0.184) 1.063(0.285) 1.004(0.219) 0.838(0.122)
LSE 1.974(0.297) 1.000(0.194) 0.804(0.152) 1.187(0.249) 1.175(0.218) 0.803(0.136)

WLSE 1.149(0.256) 1.003(0.159) 0.703(0.162) 1.135(0.283) 1.137(0.231) 0.822(0.141)
100 MLE 1.001(0.063) 0.983(0.082) 0.637(0.071) 1.001(0.064) 0.947(0.038) 0.702(0.029)

MME 1.272(0.141) 1.006(0.121) 0.842(0.109) 1.538(0.234) 1.423(0.119) 0.760(0.027)
PCE 1.193(0.219) 1.137(0.203) 0.814(0.151) 1.017(0.232) 1.003(0.216) 0.745(0.110)
LSE 1.823(0.215) 0.991(0.128) 0.725(0.137) 1.183(0.247) 1.178(0.217) 0.716(0.093)

WLSE 1.115(0.202) 0.981(0.114) 0.601(0.117) 1.113(0.192) 1.092(0.131) 0.625(0.116)

Table 2. Average relative estimators and average relative MSE’s of β .

(α,θ ,µ)

n method (0.8,0.5,0.5) (0.8,0.5,1.0) (0.8,0.5,2.0) (0.8,1.0,0.5) (0.8,1.0,1.0) (0.8,1.0,2.0)
10 MLE 1.113(0.112) 1.058(0.092) 1.013(0.087) 1.127(0.063) 1.125(0.061) 1.011(0.052)

MME 1.036(0.116) 1.028(0.101) 1.013(0.073) 1.030(0.071) 1.026(0.062) 1.015(0.058)
PCE 0.923(0.173) 0.921(0.102) 0.893(0.065) 0.937(0.063) 0.924(0.057) 0.910(0.051)
LSE 1.750(0.191) 1.028(0.125) 1.018(0.111) 1.119(0.092) 1.104(0.089) 1.101(0.082)

WLSE 1.582(0.110) 1.013(0.123) 0.812(0.102) 1.144(0.087) 1.113(0.081) 1.103(0.077)
50 MLE 1.083(0.103) 1.081(0.092) 1.072(0.082) 1.062(0.068) 1.059(0.065) 1.004(0.056)

MME 1.007(0.105) 1.004(0.101) 1.001(0.076) 1.004(0.062) 1.000(0.057) 0.983(0.054)
PCE 0.914(0.101) 0.912(0.097) 0.907(0.054) 0.942(0.063) 0.936(0.060) 0.918(0.045)
LSE 1.612(0.165) 1.003(0.108) 0.893(0.093) 1.152(0.088) 1.117(0.081) 0.938(0.078)

WLSE 1.410(0.097) 1.001(0.095) 0.592(0.081) 1.365(0.068) 1.187(0.062) 0.901(0.057)
100 MLE 1.055(0.087) 1.012(0.085) 1.007(0.081) 1.046(0.055) 1.031(0.043) 0.973(0.027)

MME 1.002(0.089) 0.990(0.079) 0.983(0.067) 1.000(0.064) 0.992(0.061) 0.912(0.043)
PCE 0.908(0.094) 0.902(0.088) 0.893(0.052) 0.923(0.051) 0.917(0.042) 0.901(0.050)
LSE 1.519(0.097) 1.002(0.087) 0.881(0.082) 1.115(0.071) 1.109(0.067) 0.971(0.051)

WLSE 1.112(0.081) 1.001(0.073) 0.516(0.063) 1.156(0.061) 1.101(0.054) 0.524(0.040)

of µ increases. One can also observe that for each estimation method, the average relative MSE’s
decreases as the sample size increases and also as the values of α and µ increase.

It is observed from Table 4 that most of the estimators usually underestimate µ for all values of
α especially for large values of µ . All estimates tend to be underestimate for large values of µ and
large sample sizes except MLE’s that appear to be always overestimate. It is also observed that all
estimates decrease as the values of µ and α increase but they increase as the sample sizes increase.
One can also observe that for each estimation method, the average relative MSE’s decreases as the
sample size increases and also as the values of α and µ increase.

The MLE’s provide the best results for all sample sizes. The WLSE’s work better than the LSE’s
for all sample sizes and all values of α . In the context of computational issues, the MLE’s, MME’s
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Table 3. Average relative estimators and average relative MSE’s of θ .

(α,θ ,µ)

n method (0.8,0.5,0.5) (0.8,0.5,1.0) (0.8,0.5,2.0) (0.8,1.0,0.5) (0.8,1.0,1.0) (0.8,1.0,2.0)
10 MLE 0.984(0.092) 0.980(0.059) 0.975(0.056) 0.992(0.061) 0.981(0.058) 0.971(0.053)

MME 1.190(0.039) 0.997(0.036) 0.812(0.028) 0.601(0.021) 0.595(0.019) 0.589(0.010)
PCE 1.112(0.172) 0.912(0.070) 0.892(0.067) 0.725(0.072) 0.506(0.063) 0.489(0.071)
LSE 1.169(0.061) 0.987(0.021) 0.701(0.015) 0.517(0.018) 0.349(0.011) 0.301(0.005)

WLSE 1.111(0.039) 1.001(0.009) 0.699(0.004) 0.505(0.018) 0.322(0.009) 0.295(0.005)
50 MLE 0.979(0.061) 0.973(0.053) 0.966(0.050) 0.981(0.050) 0.965(0.048) 0.958(0.042)

MME 1.065(0.65) 0.982(0.060) 0.805(0.058) 0.585(0.041) 0.581(0.009) 0.543(0.006)
PCE 0.884(0.059) 0.865(0.056) 0.851(0.055) 0.713(0.066) 0.501(0.059) 0.476(0.053)
LSE 1.089(0.054) 0.953(0.047) 0.664(0.012) 0.482(0.015) 0.340(0.011) 0.293(0.004)

WLSE 1.003(0.027) 0.996(0.023) 0.639(0.010) 0.486(0.012) 0.317(0.005) 0.281(0.004)
100 MLE 0.972(0.054) 0.968(0.043) 0.957(0.043) 0.976(0.046) 0.961(0.041) 0.941(0.032)

MME 1.005(0.056) 0.971(0.057) 0.843(0.051) 0.611(0.041) 0.572(0.009) 0.523(0.005)
PCE 0.872(0.066) 0.823(0.059) 0.739(0.052) 0.705(0.051) 0.490(0.046) 0.431(0.023)
LSE 0.983(0.047) 0.951(0.042) 0.610(0.017) 0.478(0.015) 0.332(0.009) 0.284(0.006)

WLSE 0.983(0.022) 0.980(0.019) 0.601(0.011) 0.473(0.015) 0.314(0.004) 0.275(0.004)

Table 4. Average relative estimators and average relative MSE’s of µ .

(α,θ ,µ)

n method (0.8,0.5,0.5) (0.8,0.5,1.0) (0.8,0.5,2.0) (0.8,1.0,0.5) (0.8,1.0,1.0) (0.8,1.0,2.0)
10 MLE 1.032(0.061) 1.016(0.048) 1.009(0.034) 1.035(0.041) 1.018(0.025) 1.007(0.019)

MME 1.094(0.125) 1.037(0.127) 0.746(0.119) 0.589(0.276) 0.541(0.255) 0.526(0.212)
PCE 0.903(0.107) 0.892(0.053) 0.884(0.049) 0.915(0.048) 0.904(0.041) 0.897(0.036)
LSE 1.093(0.099) 0.902(0.046) 0.783(0.039) 0.703(0.031) 0.628(0.018) 0.614(0.012)

WLSE 1.087(0.077) 0.931(0.052) 0.816(0.030) 0.707(0.030) 0.663(0.018) 0.628(0.016)
50 MLE 1.034(0.059) 1.024(0.039) 1.019(0.032) 1.045(0.039) 1.022(0.031) 1.017(0.017)

MME 1.107(0.119) 1.045(0.112) 0.815(0.109) 0.584(0.222) 0.572(0.212) 0.547(0.180)
PCE 0.937(0.048) 0.917(0.045) 0.892(0.041) 0.937(0.045) 0.916(0.037) 0.901(0.029)
LSE 1.142(0.023) 0.964(0.021) 0.790(0.009) 0.734(0.006) 0.680(0.004) 0.636(0.003)

WLSE 1.092(0.020) 1.072(0.018) 0.868(0.009) 0.789(0.005) 0.733(0.003) 0.701(0.002)
100 MLE 1.082(0.017) 1.076(0.015) 1.031(0.009) 1.052(0.012) 1.041(0.007) 1.032(0.002)

MME 1.127(0.107) 1.119(0.093) 0.870(0.082) 0.612(0.111) 0.594(0.094) 0.567(0.087)
PCE 0.973(0.045) 0.958(0.041) 0.919(0.033) 0.942(0.030) 0.927(0.022) 0.914(0.019)
LSE 1.192(0.021) 1.187(0.009) 0.901(0.007) 0.782(0.006) 0.709(0.004) 0.683(0.002)

WLSE 1.099(0.015) 1.085(0.007) 0.907(0.004) 0.870(0.004) 0.749(0.002) 0.721(0.001)

and PCE’s could not be easily implemented since they involve non-linear equations. The LSE’s and
WLSE’s involve non-linear functions that should be minimized.
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[8] E. Gómez-Déniz, Another Generalization of the Geometric Distribution, Test 19(2) (2010) 399–415.
[9] R. Gupta and D. Kundu, Generalized Exponential Distribution: Different Method of Estimations, Jour-

nal of Statistical Computation and Simulation 69(4) (2001) 315–337.
[10] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distribution, Vol. 1, 2nd Ed.,

(Wiley, New York, 1994).
[11] J.H.K. Kao, Computer Methods for Estimating Weibull Parameters in Reliability Studies, IRE Trans-

actions on Reliability and Quality Control 13 (1958) 15–22.
[12] J.H.K. Kao, A Graphical Estimation of Mixed Weibull Parameters in Life Testing Electron Tube, Tech-

nometrics 1(4) (1959) 389–407.
[13] Z.A. Karian and E.J. Dudewicz, Modern Statistical Systems and GPSS Simulations, 2nd edition, (CRC

Press, Florida, 1998).
[14] D. Kundu, and M. Raqab, Generalized Rayleigh Distribution: Different Methods of Estimations, Com-

putational Statistics & Data Analysis 49(1) (2005) 187–200.
[15] N.R. Mann, R.E. Schafer and N.D. Singpurwalla, Methods for Statistical Analysis of Reliability and

Life Data, (Wiley, New York, 1974).
[16] A.W. Marshall and I. Olkin, A New Method for Adding a Parameter to a Family of Distributions with

Application to the Exponential and Weibull Families, Biometrika 84(3) (1997) 641–652.
[17] M. Neto, M. Bourguignon, L. Zea, A. Nascimento and G.M. Cordeiro, The Marshall-Olkin Extended

Weibull Family of Distributions, Journal of Statistical Distributions and Applications 1(9) (2014).
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