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The exponentiated Gumbel model has been shown to be useful in climate modeling including global warming
problem, flood frequency analysis, offshore modeling, rainfall modeling and wind speed modeling. Here, we
consider estimation of the PDF and the CDF of the exponentiated Gumbel distribution. The following esti-
mators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML)
estimator, percentile (PC) estimator, least squares (LS) estimator and weighted least squares (WLS) estimator.
Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data
applications show that the ML estimator performs better than others.
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1. Introduction

The exponentiated Gumbel distribution has received considerable interest. Some recent applications
of it have included: climate modeling, Nadarajah (2005); stress strength modeling, Kakade et al.
(2008); estimation of return values for significant wave height in oceanography (Persson and Rydèn
(2010)); modeling of failure times of the air conditioning system of an aeroplane, Raja and Mir
(2011); modeling of the runs scored by a cricketer in twenty seven innings at national level, Raja
and Mir (2011).

Nadarajah (2006) proposed the exponentiated Gumbel (EG) distribution as a generalization of
the classical Gumbel distribution. Its cumulative distribution function (CDF) is specified by
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F(x) =
[
e−e

− x−α
β
]λ

, (1.1)

where x > 0, α, β , λ > 0. The corresponding probability density function (pdf) is

f (x) =
λ
β

e−
x−α

β e−λe
− x−α

β
, x > 0, α, β , λ > 0, (1.2)

where α is the location parameter, β is the scale parameter and λ is the shape parameter.
Because of the numerous applications of the EG distribution, we feel the importance to investi-

gate efficient estimation of the pdf and the CDF of the EG distribution. We consider several different
estimation methods: uniformly minimum variance unbiased (UMVU) estimation, maximum like-
lihood (ML) estimation, percentile (PC) estimation, least squares (LS) estimation and weight least
squares (WLS) estimation.

Similar studies have appeared in the recent literature for other distributions. For example,
Bagheri et al. (2014) derive estimators of the pdf and the CDF of a three-parameter generalized
exponential-Poisson distribution when all but its shape parameter are assumed known. Recently
Bagheri et al. (2016) have considered Efficient estimation of the PDF and the CDF of the Weibull
extension model. Alizadeh et al. (2015a) derive estimators of the pdf and the CDF of a three-
parameter exponentiated Weibull distribution when all but its shape parameter are assumed known.
Also Alizadeh et al. (2015b) derive estimators of the pdf and the CDF of a two-parameter the gen-
eralized exponential distribution.

The paper is organized as follows. The MLE and the UMVUE of the pdf and the CDF and their
mean squared errors (MSEs) are derived in Sections 2 and 3. The PCEs of the pdf and the CDF are
discussed in Section 4. The LSEs and WLSEs of the pdf and the CDF are discussed in Section 5.
The estimators are compared by simulation and real data application in Sections 6 and 7. Finally,
some discussion on the possible use of the results in the paper is provided in Section 8.

Throughout the paper (except for Section 7), we assume λ is unknown, but both α and β are
known. This assumption is not entirely unreasonable. For example, in the case of the normal dis-
tribution and its extensions, the location and scale parameters can be set equal to sample mean and
sample standard deviation, respectively. In other words, the data can be standardized before the fit-
ting of a distribution so that its location and scale parameters take ”standard” and known values.
Standardization of data is common practice.

A future work is to extend the results of the paper to the case that all three parameters of the EG
distribution are unknown. There has been work in the literature where the pdf and the CDF have
been estimated when all their parameters are unknown.

Such estimation of pdfs is considered by Lech and Maryana (2009) for a trapezoidal distribution,
by Koenker and Mizera (2010) for a log-concave distribution, and by Duval (2013) for a compound
Poisson distribution. See also Er (1998). Koenker and Mizera (2010) use MLEs.

Estimation of CDFs is considered by Przybilla et al. (2013) for a three-parameter Weibull dis-
tribution, by Durot et al. (2013) for a convex discrete distribution, and by Dattner and Reiser (2013)
for distributions in measurement error models. Przybilla et al. (2013) use MLEs and Durot et al.
(2013) use LSEs.
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2. Maximum Likelihood Estimator of pdf and CDF

Let X1, ...,Xn be a random sample of size n from the EG distribution. The MLE of λ say λ̃ is

λ̃ =
n

∑n
i=1 e−

xi−α
β

.

Therefore, we obtain MLEs of the pdf and the CDF as

f̃ (x) =
λ̃
β

e−
x−α

β e−λ̃e
− x−α

β
(2.1)

and

F̃(x) =
[
e−e

− x−α
β
]λ̃

(2.2)

respectively, for x > 0, α,β > 0. After some elementary algebra, we obtain the pdf of λ̃ = s as

g(s) =
nnλ n

Γ(n)
e−

nλ
s

sn+1 (2.3)

for s > 0.
In the following, we calculate E

(
f̃ (x)

r)
and E

(
F̃(x)

r
)

.

Theorem 2.1. The E
(

f̃ (x)
r)

and E
(

F̃(x)
r
)

are given, respectively, as

E
(

f̃ (x)
r)

= 2
(nλ ) r+n

2 e−r x−α
β

Γ(n)β r

(
1

re−
x−α

β

) r−n
2

Kr−n

(
2
√

nλ re−
x−α

β

)
. (2.4)

E
(

F̃(x)
r
)
= 2

(nλ ) n
2

Γ(n)

(
1

re−
x−α

β

)−n
2

K−n

(
2
√

nλ re−
x−α

β

)
, (2.5)

and Kν(·) denotes the modified Bessel function of the second kind of order ν .

Proof. For more details see Alizadeh et al. (2015b).
It must be note that the estimators, f̃ (x) and F̃(x), are biased for f (x) and F(x), respectively. In

the following theorem we obtain the MSE of f̃ (x) and F̃(x).

Theorem 2.2.

(A) MSE
(

f̃ (x)
)

=
2(nλ ) 2+n

2 e−2 x−α
β

Γ(n)β 2

(
1

2e−
x−α

β

) 2−n
2

K2−n

(
2
√

2nλe−
x−α

β

)

−4 f (x)(nλ ) 1+n
2 e−

x−α
β

Γ(n)β

(
1

e−
x−α

β

) 1−n
2

K1−n

(
2
√

nλe−
x−α

β

)
− f 2(x).
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(B) MSE
(

F̃(x)
)

=
2(nλ ) n

2

Γ(n)

(
1

2e−
x−α

β

)−n
2

K−n

(
2
√

2nλe−
x−α

β

)

−4F(x)(nλ ) n
2

Γ(n)

(
1

re−
x−α

β

)−n
2

K−n

(
2
√

nλ re−
x−α

β

)
−F2(x)

Proof. Note that MSE( f̃ (x)) = E
(

f̃ (x)
)2

− 2 f (x)E
(

f̃ (x)
)
+ f 2(x). We have an expression for

E
(

f̃ (x)
)

from Theorem 2.1. An expression for E
(

f̃ (x)
)2

can be obtained similarly by fol-

lowing the proof of Theorem 2.1, yielding the given expression for MSE
(

f̃ (x)
)

. The proof for

MSE
(

F̃(x)
)

is similar.

It is clear that the ML estimator of λ is biased and MSE(λ̃ ) = (n+2)λ 2

(n−1)(n−2) .

3. UMVU Estimator of pdf and CDF

In this section, we find the UMVU estimators of the pdf and the CDF and their MSEs.
Let X1, ...,Xn be a random sample of size n from the EG distribution is given by (1.2). Then

T = ∑n
i=1 e−

xi−α
β is a complete sufficient statistic for the unknown parameter λ (when both α and β

are known) and the pdf of T is as

h∗(t) =
λ n

Γ(n)
tn−1e−λ t (3.1)

for t > 0. According to Lehmann Scheffe theorem if h(x1|t) = f ∗(t) is the conditional pdf of X1

given T , we have

E[ f ∗(T )] =
∫

h(x1|t)h∗(t)dt =
∫

h(x1, t)dt = f (x1),

where h(x1, t) is the joint pdf of X1 and T . Therefore f ∗(t) is the UMVUE of f (x).

Lemma 3.1. The joint distribution of X1 and T is as

h(x1, t) =
λ
β

e−
x1−α

β e−λe
− x1−α

β λ n−1

Γ(n−1)
(t − k)n−2e−λ (t−k), k < t < ∞, (3.2)

where k = e−
x1−α

β .

Proof. We have the joint distribution of (X1,X2, ...,Xn) as

f (x1,x2, ...,xn) =
n

∏
i=1

f (xi) =
n

∏
i=1

(
λ
β

e−
xi−α

β e−λe
− xi−α

β
)
. (3.3)

In order to find the joint pdf of (X1,T ), we apply the transformation:
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y1 = e−
x1−α

β , y2 = e−
x2−α

β , ...yn−1 = e−
xn−1−α

β , t = ∑n
i=1 e−

xi−α
β . Then by using some elementary

algebra and (n−2) integrations for y2, y3, ... , yn−1, the proof is done.

Theorem 3.1. Let T = t be given. Then

f̂ (x) =
(n−1)e−

x1−α
β

β
(t − k)n−2

tn−1 , (3.4)

is a UMVUE for f (x), and

F̂(x) =
[
1− e−

x1−α
β

t

]n−1
(3.5)

is a UMVUE for F(x), where k = e−
(x1−α)

β and k < t < ∞.

Proof. For more details see Alizadeh et al. (2015b).

Theorem 3.2. The MSEs of f̂ (x) and F̂(x) are given by

MSE
(

f̂ (x)
)
=

(n−1)2

β 2 e−2 x−α
β

λ n

Γ(n)

2n−4

∑
i=0

(−k)i
(

2n−4
i

)
Γ(n−2− i,λk)− f 2(x)

and

MSE
(

F̂(x)
)
=

λ n

Γ(n)

2n−2

∑
i=0

(−k)i
(

2n−2
i

)
Γ(n− i,λk)−F2(x)

where Γ(s,x) =
∫ ∞

x ts−1e−tdt denotes the complementary incomplete gamma function.

Proof. For more details see Alizadeh et al. (2015b).
It must be note that UMVU estimator of λ is λ̂ = n−1

∑n
i=1 e

− xi−α
β

and MSE(λ̂ ) = λ 2

n−2 .

In the following section we present other estimators.

4. Estimators Based on Percentiles

Estimation based on percentiles was originally explored by Kao (1959), see also Mann et al. (1974)
and Johnson et al. (1994). Percentiles estimators are based on inverting the CDF. Since the EG has
a closed form CDF, its parameters can be obtained estimated using percentiles.

Let X1, . . . ,Xn denote a random sample from the EG distribution and let X(1) < · · ·< X(n) denote
the ordered sample. Also let pi = i/(n+1). The percentile estimator of λ (when α and β are known

), say λ̃pc, is the value minimizing ∑n
i=1

(
pi +λe−

x(i)−α
β

)2

. So, the percentile estimators of the pdf

and the CDF are

f̃pc(x) =
λ̃pc

β
e−

x−α
β e− λ̃pce

− x−α
β

(4.1)

F̃pc(x) =
(

e−e
− x−α

β
)λ̃pc

. (4.2)

Journal of Statistical Theory and Applications, Vol. 16, No. 1 (March 2017) 81–95
___________________________________________________________________________________________________________

85



5. Least Squares and Weighted Least Squares Estimators

In this section, we derive regression based estimators of the unknown parameter. This method was
originally suggested by Swain et al. (1988) to estimate the parameters of beta distributions. It can be
used some other cases also. Suppose X1, . . . ,Xn is a random sample of size n from a CDF F(·) and
suppose X(i), i = 1, . . . ,n denote the ordered sample. The proposed method uses the CDF of F(X(i)).
For a sample of size n, we have

E
[
F
(
X( j)
)]

= j
n+1 ,Var

[
F
(
X( j)
)]

= j(n− j+1)
(n+1)2(n+2) ,Cov

[
F
(
Y( j)
)
,F
(
X(k)
)]

= j(n−k+1)
(n+1)2(n+2) for j < k,

see Johnson et al. (1994). Using the expectations and the variances, two variants of the least squares
method follow.

5.1. Method 1: Least Squares Estimators

This method is based on minimizing ∑n
j=1

[
F(X( j))− j

n+1

]2
, with respect to the unknown parame-

ters. In case of EG distribution the least squares estimators of λ (when α and β are known ), say

λ̃ls, is the value minimizing ∑n
j=1

(
e−λe

−
x( j)−α

β − j
n+1

)2
. So, the LS estimators the pdf and the CDF

are

f̃ls(x) =
λ̃ls

β
e−

x−α
β e−λ̃lse

− x−α
β

(5.1)

F̃ls(x) =
(

e−e
− x−α

β
)λ̃ls

. (5.2)

It is difficult to find the expectation and the MSE of these estimators by mathematical methods. We
can calculate them by means of a simulation study.

5.2. Method 2: Weighted Least Squares Estimators

This method is based on minimizing

∑n
j=1 w j

[
F(X( j))− j

n+1

]2
, with respect to the unknown parameters, where w j =

1
Var(F(Y( j)))

=

(n+1)2(n+2)
j(n− j−1) . In case of EG distribution the least squares estimators of λ (when α and β are known),

say λ̃wls, is the value minimizing ∑n
j=1 w j

(
e−λe

−
x(i)−α

β − j
n+1

)2
,with respect to λ . So, the WLS

estimators of the pdf and the CDF are

f̃wls(x) =
λ̃wls

β
e−

x−α
β e− λ̃wlse

− x−α
β

(5.3)

F̃wls(x) =
(

e−e
− x−α

β
)λ̃wls

. (5.4)

It is difficult to find the expectation and the MSE of these estimators by mathematical methods. We
can calculate them by means of a simulation study.

6. Simulation study

Here, we perform a simulation study to compare the performances of the following estimators:
MLE, UMVUE, PCE, LSE and WLSE of the pdf and the CDF. The comparison is based on MSEs.
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The MSEs were computed by generating one thousand replications of samples of size n= 5, . . . ,100
from the EG distribution with (α,β ,λ ) =(0.5,0.5,0.5), (2,2,2), (3,3,3), (1,2,3), (3,2,1), (2,1,1). Fig-
ures 1 to 2 plot the derivation of the MSEs of the UMVUE, WLSE, LSE, and the PCE from the
MSE of the MLE versus n.

We can see from the figures that the ML estimators of the and the CDF are the most efficient for
all n. The UMVU estimators are the second most efficient for all n. The WLS estimators are third
most efficient for all n. The LS estimators are the fourth most efficient for all n. The PC estimators
are the least efficient for all n. We can also see that the gain in efficiency by using the MLE over
others increases with increasing λ .

7. Data analysis

Here, we use a real data set to compare the performances of MLE, PCE, LSE and WLSE of the
pdf and the CDF. The first data set represents the strength data originally reported in Badar and
Priest (1982). It represents the strength measured in GPA for single carbon fibers and impregnated
1000-carbon fiber tows. Single fibers were tested under tension at gauge length of 10mm. They are
as follows:

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522,
2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928,
2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272,
3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871,
3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

When one works with real data, all of the parameters, α , β and λ are unknown. Therefore we
use the following equations for estimating unknown parameters under different methods.

Let X1, ...,Xn be a random sample of size n from the EG distribution given by (1.2), then the
log-likelihood function of the observed sample is

L(α,β ,λ ) = n logλ −n logβ −
n

∑
i=1

xi −α
β

−λ
n

∑
i=1

e−
xi−α

β . (7.1)

The MLEs of α , β and λ , say α̃ , β̃ and λ̃ respectively, can be obtained as the solutions of the
equations

∂L
∂λ

=
n
λ
−

n

∑
i=1

e−
xi−α

β = 0, (7.2)

∂L
∂β

=− n
β
+

n

∑
i=1

xi −α
β 2 −λ

n

∑
i=1

xi −α
β 2 e−

xi−α
β = 0,

∂L
∂α

=
n
β
− λ

β

n

∑
i=1

e−
xi−α

β = 0. (7.3)

The PCEs of α , β and λ , say α̃pc, β̃pc and λ̃pc respectively, can be obtained by minimizing

∑n
j=1

[
p j +λe−

x( j)−α
β

]2

.

The LSEs of α , β and λ , say α̃ls, β̃ls and λ̃ls respectively, can be obtained by minimizing

∑n
j=1

[
e−λe

−
x( j)−α

β − j
n+1

]2

.
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The weighted least squares estimators of the unknown parameters, α , β and λ , say α̃wls, β̃wls

and λ̃wls respectively, can be obtained by minimizing ∑n
j=1 w j

[
e−λe

−
x( j)−α

β − j
n+1

]2

, where w j =

1
Var(F(Y( j)))

= (n+1)2(n+2)
j(n− j+1) .

The EG distribution was fitted to the strength data by MLE, PCE, LSE and WLSE. Table 1 gives
the estimates of α , β , λ and the corresponding log-values. The log-likelihood value is the largest
for the MLE.

Table 1. Estimates of the parameters and the corresponding log-likelihood.

Estimate of α Estimate of β Estimate of λ Log-Likelihood
MLE 2.4235807 0.5125927 1.9638011 -56.51386
PCE 2.4213873 0.5196643 1.9632186 -56.52364
LSE 2.3885197 0.5672428 1.9540527 -57.07471

WLSE 2.4040106 0.5433652 1.9584667 -56.70443

Table 2. Mean absolute and mean
squared deviations based on the Q-Q
plots.

MAD MSD
MLE 0.5003341 0.4144542
LSE 0.5536773 0.5075393

WLSE 0.5303706 0.4657096
PCE 0.5072366 0.4259684

Figures 4, 5 and 6 show the Q-Q plots (observed quantiles versus expected quantiles), the den-
sity plots (fitted PDFs versus empirical histogram) and the P-P plots (observed probabilities versus
expected probabilities) for the four different estimation methods. Visual inspection of these figures
shows that the ML estimator provides the best fit. To verify this observation, we used mean absolute
deviations (MADs) and mean squared deviations (MSDs) to quantify the amount of discrepancy
between the observed and expected. The MADs and MSDs between the observed and expected
quantiles for the four different estimation methods are shown in Table 2. These tables shows that
the values of MAD and MSD are smallest for the ML estimator.

We also compared the estimation methods by means of model selection criteria. The ones we
considered are: pure’ maximum likelihood (ML) = -2 lnL(θ), Akaike information criterion (AIC)
= -2 lnL(θ)+2k, corrected AIC (AICc) = -2 lnL(θ)+2k n

n−k−1 , Bayes information criterion (BIC,
also known as Schwarz criterion) = -2 lnL(θ)+k lnn, Hannan-Quinn criterion (HQC) = -2 lnL(θ)+
2k ln lnn,

where lnL(θ) denotes the log-likelihood, n denotes the number of observations (i.e., the length
of x) and k denotes the number of parameters of the distribution. The smaller the values of these
criteria the better the fit. For more discussion on these criteria, see Burnham and Anderson (2004)
and Fang (2011).

Table 3 gives values of the model selection criteria for the four different estimation methods.
We can see that the ML estimators give the smallest values for all five model selection criteria.
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Fig. 1. MSEs of MLE, UMVUE, PCE, LSE and WLSE for f (x) and (α ,β ,λ ) = (0.5,0.5,0.5) (top left), F(x) and
(α ,β ,λ ) = (0.5,0.5,0.5) (top right), f (x) and (α,β ,λ ) = (2,2,2) (middle left), F(x) and (α,β ,λ ) = (2,2,2) (middle
right), f (x) and (α ,β ,λ ) = (3,3,3) (bottom left) and F(x) and (α,β ,λ ) = (3,3,3) (bottom right).

Hence, evidence based on the MSEs in the simulation study, the log-likelihood values, the Q-Q
plots, the density plots, the distribution plots and the model selection criteria show that the ML
estimators for the pdf and the CDF are the best.
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Fig. 2. MSEs of MLE, UMVUE, PCE, LSE and WLSE for f (x) and (α ,β ,λ ) = (1,2,3) (top left), F(x) and (α,β ,λ ) =
(1,2,3) (top right), f (x) and (α,β ,λ ) = (3,2,1) (middle left), F(x) and (α,β ,λ ) = (3,2,1) (middle right), f (x) and
(α,β ,λ ) = (2,1,1) (bottom left) and F(x) and (α,β ,λ ) = (2,1,1) (bottom right).

8. Discussion

We have compared five different estimators (the UMVU estimator, the ML estimator, the PC esti-
mator, the LS estimator and WLS estimator) for the pdf and the CDF of the EG distribution when
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Fig. 3. Q-Q plots for the fit of the four different estimation methods.
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Fig. 4. Fitted pdfs versus the histogram for the four different estimation methods.

Table 3. The values of model selection criteria for waiting time data.

ML AIC BIC AICc HQC
MLE 113.0277 119.0277 125.4571 119.4345 121.5564
PCE 113.0473 119.0473 125.4767 119.4541 121.5760
LSE 114.1494 120.1494 126.5788 120.5562 122.6781

WLSE 113.4089 119.4089 125.8383 119.8156 121.9376

the location and scale parameters are assumed to be known. Explicit expressions are given for the
MSEs of the UMVU and ML estimators.

We have compared the performances of the five estimators by simulation and a real data appli-
cation. The results show that the ML estimator performs the best in terms of the MSEs in the
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Fig. 5. Fitted CDFs versus the empirical CDF for the four different estimation methods.

simulation study, the log-likelihood values, the Q-Q plots, the mean absolute and mean squared
deviations based on the Q-Q plots, the density plots, the P-P plots, AIC, AICc, BIC and HQC.

Comparisons of the kind performed can be useful to find the best estimators for the pdf and the
CDF. The best estimators for the pdf can be used to estimate functionals of the pdf like

• the differential entropy of f defined by

−
∫ ∞

−∞
f (x) log f (x)dx;

• the Rényi entropy defined by

1
1− γ

log
∫ ∞

0
f γ(x)dx

for γ > 0 and γ ̸= 1;
• the Kulback-Liebler divergence of f from an arbitrary pdf f0 defined by∫ ∞

−∞
f (x) ln{ f (x)/ f0(x)}dx;

• the Fisher information defined by∫ ∞

−∞

[
∂

∂θ
f (x;θ)

]2

f (x;θ)dx,

where θ is a parameter specifying the pdf.

Estimation of differential entropy is considered by Nilsson and Kleijn (2007) for data located
on embedded manifolds and by Hampel (2008) for positive random variables. The latter paper
illustrates an application in computational neuroscience. Estimation of negentropy is considered by
Dejak et al. (1993) for time series models. This paper illustrates an application to environmental
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data. Estimation of Rényi entropy is considered by Kayal et al. (2013) for exponential distributions.
UMVU and ML estimators are given. Estimation of Fisher information is considered by Mielniczuk
and Wojtys (2010) for model selection, and by Li et al. (2004).

The best estimators for the CDF can be used to estimate functionals of the CDF like

• cumulative residual entropy of F defined by∫ ∞

0
[1−F(λ )+F(−λ )] log [1−F(λ )+F(−λ )]dλ ;

• the quantile function of F defined by F−1(·);
• the Bonferroni curve defined by

1
pµ

∫ p

0
F−1(t)dt,

where µ = E(X);

Estimation of cumulative residual entropy is considered by Bratpvrbajgyran [30] for the
Rayleigh distribution. Estimation of quantiles is considered by Ehsanes Saleh et al. (1988) for a
location-scale family of distributions including the Pareto, exponential and double exponential dis-
tributions, by Ehsanes Saleh et al. (1983) for the normal distribution, by Rojo (1998) for an increas-
ing failure rate distribution. Estimation of the Lorenz curve is considered by Woo and Yoon (2001)
for a Pareto distribution. See also Gastwirth (1972).

The best estimators for both the pdf and the CDF can be used to estimate functionals of the pdf
and the CDF like

• probability weighted moments defined by∫ ∞

−∞
xFr(x) f (x)dx;

• the hazard rate function defined by

f (x)
1−F(x)

;

• the reverse hazard rate function defined by

f (x)
F(x)

;

Unbiased estimation of probability weighted moments is considered by Wang (1990). Esti-
mation of hazard rate functions is considered by Saunders and Myhre (1983) for two-parameter
decreasing hazard rate distributions, by Hsieh (1990) for the inverse Gaussian distribution, by Lin
et al. (2003) for the linear hazard rate distribution, and by Ahn et al. (2007) for a mixture distribu-
tion with censored lifetimes. Saunders and Myhre (1983) use MLEs, Hsieh (1990) uses MLEs and
UMVUEs, Lin et al. (2003) use MLEs obtained via the EM algorithm, and Ahn et al. (2007) use
MLEs and a Bayesian approach. Estimation of mean deviation is considered by Hartley (1945) for
the normal distribution and by Suzuki (1965) for the Pearson type distribution. The estimators given
by the latter are consistent.
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