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Abstract
Mukerjee (1979) introduced structure (k) property of a factorial design. In this article, we introduce structure
(k1), structure (k2) and structure (k1k2) properties of a factorial design. We establish properties of each of
these structure designs in terms of the incidence and characteristic matrices of the designs. Furthermore, we
develop methods of obtaining optimal R-type structure (k) designs and show that such designs are trace, A- and
MV -optimal. The proposed methodologies are easy to follow and the construction of the designs comes out in
a simple form.
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1. Introduction

Consider a factorial experiment with m factors such that ith factor has si levels for i = 1,2, . . . ,m.

Therefore the total number of treatment combinations in the experiment is v =
m
∏
i=1

si. Let N = (ni j)

(i = 1,2, . . . ,v; j = 1,2, . . . ,b) be the incidence matrix of a block design, where ni j = 1 or 0 if the ith
treatment occurs in the jth block or absent in the jth block respectively. The calculus for factorial
arrangements has been applied to the analysis of several classes of experimental designs and has
been addressed by several authors such as Kurkjian and Zelen [7, 8], Zelen and Federer [18, 19],
Paik and Federer [11], Mukerjee [9, 10] and Cotter [1]. Kurkjian and Zelen [7] applied the calculus
for factorial arrangements to the analysis of block designs. They showed that the concurrence matrix
NN

′
of the design with an incidence matrix N(v×b) can be expressed as a linear combination of

Kronecker products (⊗) of Ii and Ei matrices, where Ii is an identity matrix of order si and Ei is a
si× si matrix with each element unity. That is, NN

′
satisfies the property

NN
′
=

m

∑
s=0

{
∑

δ1+δ2+...+δm=s
h(δ1,δ2, . . . ,δm)(D

δ1
1 ⊗Dδ2

2 ⊗ . . .⊗Dδm
m )

}
(1.1)

where δi = 0 or 1, h(δ1,δ2, . . . ,δm) are constants depending on δi, and Dδi
i is a si× si matrix defined

by

Dδi
i =

{
Ii if δi = 0

Ei if δi = 1.

A design satisfying (1.1) is called a property (A) design. The class of designs that have property
(A) includes many designs that are used in practice such as randomized block designs, balanced
incomplete block designs, group divisible designs and bulk of the Kronecker designs constructed
by Vartak [17], Shah [13] and Rao [12]. Let C and C+ denote the characteristic matrix of the design
and Moore-Penrose inverse of C respectively. Since C+ is the Moore-Penrose inverse of C, it must
satisfy the conditions CC+C = C and C+CC+ = C+. Note that if NN

′
satisfies (1.1), i.e., if NN

′

has property (A), then the characteristic matrices C and C+ also have this property. This class of
designs is particularly suitable for use in asymmetrical factorial experiments. Also, the analysis of
the designs is simple and elegant even if there is no factorial structure underlying the treatment
combinations.

Sia [14] studied property (A) designs with respect to the A-optimality criterion. Zelen and Fed-
erer [19] extended the idea of property (A) design to row-column designs. If the column incidence
matrix N(v×b) satisfies (1.1), it is still called a property (A) design. However, if the row incidence
matrix Ñ(v×b) satisfies a similar property, then the design is called a property (B) design. Designs
in which the row and column incidence matrices satisfy (1.1) are termed as property (AB) designs.
Zelen and Federer [19] derived the intra-block analysis for property (AB) designs. Paik and Federer
[11] showed that the property (A) design and property (B) design implies property (AB) design.

Mukerjee [10] noted a major limitation of the previous work on factorial structure. The lim-
itations are that the results are given in terms of a generalized inverse of C-matrix. Results in
terms of generalized inverse of C-matrix are provided by Cotter [1], and John and Smith [6]. In
fact, Mukerjee [10] introduced the notion of structure (k) design and determined a simple set of
necessary and sufficient conditions for factorial structure which can be stated in terms of the C-
matrix. In this context, Mukerjee [10] considered that for any vector x = (x1,x2, . . . ,xm), xi = 0,1;
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W x =W x1
1 ×W x2

2 × . . .×W xm
m , where Wi = Ii−s−1

i Ei, i = 1,2, . . . ,m. We will discuss some properties
of structure (k) design in terms of W x and a permutation matrix later on. On the basis of Mukerjee
[10] we define a property of a design and call it a structure (k) design.

A v× v matrix D, where v =
m
∏
i=1

si, si ≥ 2 for all i, is said to have structure (k), if D can

be expressed as a linear combination of Kronecker products of permutation matrices of order
s1,s2, . . . ,sm (taken in that order), i.e., if D can be written as

D =
w

∑
j=1

r j(R j1⊗R j2⊗ . . .⊗R jm) (1.2)

where w is some positive integer, r1,r2, . . . ,rw are some numbers, and for each j, R ji is a si× si

permutation matrix.
Clearly property (A) design is a special case of structure (k) design. The structure (k) property

can be expressed in terms of NN
′
or C-matrix.

In the present work, we introduce structure (k1), structure (k2) and structure (k1k2) properties
of a factorial design, and show that structure (k1) design and structure (k2) design implies structure
(k1k2) design using the properties of the incidence and characteristic matrices of the designs. We
also study the structure (k) designs with respect to the trace, A- and MV -optimality criteria. Starting
from a structure (k) design and augmenting one control in each block, we develop methods of
obtaining optimal R-type structure (k) designs and show that such designs are trace, A- and MV -
optimal. The proposed methodologies are easy to follow and the construction of the designs comes
out in a simple form.

2. Preliminaries

Definition 2.1. Proper Matrix: A square matrix where all row sums and column sums are equal is
called a proper matrix.
Definition 2.2. Permutation Matrix: A square matrix with non-negative entries in which all row
sums and column sums are equal to unity is called a permutation matrix.
Lemma 2.1. Any proper matrix can be expressed as a linear combination of permutation matrices
of the same order.
Lemma 2.2. For any v× v permutation matrix R and for any x, W xRW x has structure (k).

Lemma 2.3. A v× v matrix A, where v =
m
∏
i=1

si, si ≥ 2 for all i, has structure (k) if and only if A is

expressible as a linear combination of Kronecker products of proper matrices of order s1,s2, . . . ,sm

(taken in that order).
Lemma 2.4. For a connected block design, a necessary and sufficient condition for factorial struc-
ture is that column C-matrix has structure (k).

The above lemmas are due to Mukerjee [10]. Below we state a lemma which is due to Jacroux
[5].
Lemma 2.5. Let d(v

′
,b,k

′
) be the semi-rectangular (SR) design obtained by reinforcing each block

with a control treatment of Group Divisible (GD) design d̄ having parameters v = mn, b, r = bk/v,
m = 2, n = v/2 and λ2 = λ1 +1, then design d is trace optimal.
Theorem 2.1. There exists a hypercubic design (HCD), d̄, having parameters v = tm (t = 2), r =(m+n−1

h+n−1

)
, n = k/th = 1, b = vr/k, k = th (h = 1,2, . . . ,m− 1), λi =

(m−i
h−i

)
, for i ≤ h and λ j = 0 for

j > h if d̄ satisfies the following conditions:
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(i) the size of the ith group Gi (i = 1,2, . . . ,k) should be a multiple of block size k
(ii) the block size (k) should be an even number
(iii) the ith group Gi contains v/k treatment combinations
(iv) each treatment combination occurs once and only once in each group Gi (i = 1,2, . . . ,k).
Theorem 2.2. There exists a hypercubic design (HCD), d̄, having parameters v = tm (t = 3),
r = 2m−k+2, b = vr/k, k = n for 1 < n≤ m+1, and

λi =

{
0 if i≤ m−1

1 otherwise

if d̄ satisfies the following conditions:
(i) the block size (k) is an integer, that is, k = n,
(ii) the size of the ith group Gi should be a multiple of tn for i = 1,2, . . . , th−1, h = 1,2, . . . ,m−1,
(iii) the levels of the factor at ith position are not the same for all the factors while taking k treatment
combinations from Gi different groups and keeping them in one block.

Theorem 2.1 and 2.2 are useful for the construction of SR-HCD designs.
Theorem 2.3. Let d(v

′
,b,k

′
) be a SR-HCD design obtained by reinforcing each block with a control

treatment of hypercubic design, d̄, having parameters same as in Theorems 2.1 and 2.2. If d satisfies
the conditions discussed in Lemma 2.5, then d is trace optimal.
Theorem 2.4. Let r0 be the number of replication of the control treatment in d∗, where d∗ ∈Dr0(v+
1,b,k) is a Group Divisible Treatment Design (GDTD) having parameters m = 2, n = v/2, and
λ2 = λ1 + 1. If m1(r0) ≤ m2(r0) and d∗ is such that trC−1

d∗11 ≤ H2(r0), then d∗ is A-optimal in
Dr0(v+ 1,b,k), where Cd∗11 is the principal submatrix obtained from C∗d after deleting row 1 and
column 1 and H2(r0) = (1/m1(r0))+ ((v−1)/m4(r0)) with m1(r0) = b(k−1)/vk, m4(r0) = {A−
(2/k)−m1(r0)}/(v−1), A = b(k−1)2/k.
Theorem 2.5. For a given value of r0, let d∗ ∈ Dr0(v+ 1,b,k) be a Group Divisible Treatment
Design (GDTD(s+1)) such that

rd∗0k−λd∗00 = r0k−λ (r0), λ̄0 = (r0k−λ (r0))/v,
rd∗ik−λd∗ii = R(r0)(k−1), for i = 1, . . . ,v,

λ̄2 = λ̄1 +1 where λ̄1 = [(R(r0)(k−1)− λ̄0)/(v−1)].
Also, for positive integers p and q, define B(p,q) = (1− ((1− m̄p)(1− m̄q))1/2)/m̄ and let

m̄k = (k/vλ̄0)+((v̄−1)sk/v(v̄(s−1)λ̄2+vλ̄1+ λ̄0))+((s−1)k/v(vλ̄2+ λ̄0)) where v̄ = v/s. Now,
if

(1) r0k−λ (r0)−2 < vB(r0k−λ (r0)−2,R(r0)(k−1))
(2) (R(r0)− 1)(k− 1) or r0k− λ (r0) satisfies one of the appropriate inequalities 1/(R(r0)−

1)(k−1)> m̄ or r0k−λ (r0)< (v−2)B(r0k−λ (r0),R(r0)(k−1))+B(r0k−λ (r0),(R(r0)−
1)(k−1))+B(r0k−λ (r0),(R(r0)+1)(k−1))

(3) m̄k < min{(c̄d00 + c̄dii +2c̄di0)/(c̄d00c̄dii− c̄2
dio),(c̄d00 + c̄d j j +2c̄d j0)/(c̄d00c̄d j j− c̄2

d j0)}
(4) m̄k < {c̄d pp(c̄d00 + c̄dqq + 2c̄d pq)− (c̄d p0 + c̄d pq)

2}/{c̄d00c̄d ppc̄dqq− c̄d00c̄2
d pq− c̄d ppc̄2

dq0−
c̄dqqc̄2

d p0 +2c̄d p0c̄dq0c̄d pq}

then d∗ is MV-optimal in Dr0(v + 1,b,k), where N(r0) = [ r0
b ], λ (r0) = (r0 − bN(r0))(N(r0) +

1)2 + (b− r0 + bN(r0))N2(r0), R(r0) = [(bk− r0)/v)], rd∗i is the ith row sum of Nd∗ (incidence
matrix) which represent the number of times treatment i is replicated in the design d∗ and λd∗ii is
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the diagonal entries of ith row and ith column of the concurrence matrix Nd∗N
′
d∗ for i = 1, . . . ,v,

c̄d00 = (r0k− λ (r0))/k, c̄dii = R(r0)(k− 1)/k, c̄dio = −(λ̄0− 1)/k, c̄d j j = (R(r0)(k− 1)− 2)/2,
c̄d j0 =−λ̄0/k, c̄d pp = c̄dqq =R(r0)(k−1)/k, c̄d p0 = c̄dq0 =−λ̄0/k, -c̄d pq = (λ̄1−1)/k or (λ̄1+2)/k,
and [.] denotes the greatest integer function.

For further details see Jacroux [2 – 4]. Theorems 2.1, 2.2, 2.3 are due to Thannipara [15].
Theorem 2.4 is due to Jacroux [2]. Theorem 2.5 is due to Jacroux [3].

3. Analysis of structure (k1), structure (k2) and structure (k1k2) designs for two way
elimination

Consider a block design with v treatments in b blocks such that each block contains k experimental
units and each treatment is replicated r times. If we consider the design as an array with k rows and
b columns where the entries in the array consist of the treatment numbers, the analysis of structure
(k) designs follows from the work of Zelen and Federer [19]. Define the matrices N = (ni j) and
Ñ = (ñih) of dimensions v×b and v×k respectively, where ni j = number of times treatment i occurs
in block j and ñih= number of times treatment i occurs in row h. The matrix N is the incidence
matrix for the design which relates the treatments to the (columns) blocks. We call N as the column
incidence matrix and Ñ as the row incidence matrix. Using the matrices N and Ñ, we can also define
column C-matrix and row C-matrix. The column C-matrix is defined by

C = R−NK−1N
′

where, R = diag(r1,r2, . . . ,rv), and K = diag(k1,k2, . . . ,kb).
The row C-matrix is defined by

C̃ = R̃− ÑK̃−1Ñ
′

where, R̃ = diag(r̃1, r̃2, . . . , r̃v) = R and K̃ = diag(k̃1, k̃2, . . . , k̃k).
Let Yjh ( j = 1,2, . . . ,b;h = 1,2, . . . ,k) denote the measurement made in the jth block and hth

row. When treatment i is in block j and row h, the random variable Yjh is assumed to have expected
value E(Yjh) = µ +τi +b j + rh, where µ is a constant, and τi, b j, and rh are fixed effects associated

with the treatments, blocks and rows respectively. These parameters satisfy the constraints
v
∑

i=1
τi =

b
∑
j=1

b j =
k
∑

h=1
rh = 0. We assume that Yjh’s are uncorrelated with common variance σ2.

When we analyze such design, our interest is usually focussed on estimating the treatment effect
τi. The estimates of the treatment effects can be obtained by solving a set of v simultaneous linear
equations which depend on the incidence matrices N and Ñ, and the adjusted treatment totals, which
are functions of the observations. The adjusted treatment total for ith treatment is given by

Qi = Ti−
b

∑
j=1

(ni jB j)/k−
k

∑
h=1

(ñihRh)/b+G/v (3.1)

where Ti= total for treatment i,

B j =
k
∑

h=1
Yjh= total for jth block,

Rh =
b
∑
j=1

Yjh=total for hth row, and

Journal of Statistical Theory and Applications, Vol. 16, No. 1 (March 2017) 96–107
___________________________________________________________________________________________________________

100



G =
v
∑

i=1
Ti =

b
∑
j=1

B j =
k
∑

h=1
Rh =

b
∑
j=1

k
∑

h=1
Yjh.

The adjusted treatment totals Qi’s in (3.1) can be expressed as

Q = T − 1
k
(NB)− 1

b
(ÑR)+

G
v

1 (3.2)

where T(v×1), B(b×1), and R(k×1) are the column vectors of the treatment, block and row totals respec-
tively, and 1 denotes a v×1 vector of 1’s.

Now using Tochar [16], the reduced normal equations for estimating the treatment effect vector
τ
′
= (τ1,τ2, . . . ,τv) can be written as

Q =

[
rI− 1

k
(NN

′
)− 1

b
(ÑÑ

′
)+
( r

v

)
11
′
]

τ̂ (3.3)

where I is an identity matrix of order v. The estimate of the variance is

S2 = [Y
′
Y − τ̂

′
Q− 1

b
(R
′
R)− 1

k
(B
′
B)+

G2

vr
(1
′
1)]/ve

where ve = (bk−b− v− k+2), the degrees of freedom of S2.

4. Structure (k1), structure (k2) and structure (k1k2) properties and factorial structure

As mentioned earlier, a structural property of a design which is related to the block incidence matrix
or column C-matrix of the design, is given by

NN
′
=

w

∑
j=1

ξ jR j (4.1)

where w is some positive integer, ξ1,ξ2, . . . ,ξw are some numbers, R j = (R j1⊗R j2⊗ . . .⊗R jm) and
for each j, R ji is a si× si permutation matrix. This structural property is termed as structure (k).

In the present work we call it a structure (k1) property. We can define a similar property for the
row incidence matrix Ñ and call it a structure (k2) property which is given by

ÑÑ
′
=

w

∑
j=1

ξ̃ jR j (4.2)

where ξ̃1, ξ̃2, . . . , ξ̃w are some numbers.
When the structure properties (k1) and (k2) both hold, we have[

rI− 1
k
(NN

′
)− 1

b
(ÑÑ

′
)+
( r

v

)
11
′
]
=

w

∑
j=1

ψ jR j (4.3)

for some numbers ψ1,ψ2, . . . ,ψw.
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We call this a structure (k1k2) property. Substituting (4.3) in (3.3), we can write the reduced
normal equations as given by

(
w

∑
j=1

ψ jR j

)
τ̂ = Q (4.4)

that is,

Dτ̂ = Q (4.5)

where D =
w
∑
j=1

ψ jR j.

On this basis we can define structure (k1), structure (k2) and structure (k1k2) properties as fol-
lows.
Definition 4.1. Structure (k1) property: If a column C-matrix of connected block design satisfies
the relation (4.1), then it is called a structure (k1) property.

Definition 4.2. Structure (k2) property: If a row C-matrix of connected block design satisfies the
relation (4.2), then it is called a structure (k2) property.

Definition 4.3. Structure (k1k2) property: If the column and row C-matrices satisfy the relation
(4.3), then it is called a structure (k1k2) property.

Remark 1. From the definitions 4.1 - 4.3, it is clear that structure (k1) and structure (k2) implies
structure (k1k2) property.

Remark 2. From definitions 4.1 - 4.3, one can see that property (A), property (B) and property (AB)
are special cases of structure (k1), structure (k2) and structure (k1k2) respectively.

Mukerjee [10] has shown that a necessary and sufficient condition for factorial structure in
connected block design is that C-matrix has structure (k) property. Interestingly, in the present
work, we observe that a necessary and sufficient condition for factorial structure is that column
C-matrix has structure (k1) or row C-matrix has structure (k2) or column and row C-matrices have
structure (k1k2) property.

Theorem 4.1. For a connected block design, a necessary and sufficient condition for factorial struc-
ture is that C-matrix has structure (k1).
Proof. The proof follows from Lemma 2.3.

Theorem 4.2. For a v× v permutation matrix R and for any x, W xRW x has structure (k2).
Proof. The proof follows from Lemma 2.2.

Theorem 4.3. For a connected block design, a necessary and sufficient condition for factorial struc-
ture is that row C-matrix has structure (k2) property.
Proof. The proof follows from Theorem 4.2 and Lemma 2.3.

For a connected, equi-replicate and proper block design, factorial structure holds if and only if
column incidence matrix has structure (k1) or row incidence matrix has structure (k2) or row and
column incidence matrices have structure (k1k2).
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5. An example

Consider a hypercubic design (HCD) with parameters v = 22, b = 4, r = 2, k = 2, λ1 = 1 and λ2 = 0
whose blocks are

1 2 1 3
3 4 2 4

The structures of row-column designs are

NN
′
=

(
N1 N2

N2 N1

)
, ÑÑ

′
=

(
Ñ1 Ñ2

Ñ3 Ñ4

)
,

C =

(
C1 C2

C2 C1

)
, C̃ =

(
C̃1 C̃2

C̃3 C̃4

)
.

In this example,

NN
′
=


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 .

Now, we can write NN
′
as given by

NN
′
= 1

{(
1 0
0 1

)
⊗
(

1 0
0 1

)}
+1
{(

1 0
0 1

)
⊗
(

1 0
0 1

)}
+1
{(

1 0
0 1

)
⊗
(

0 1
1 0

)}
+1
{(

0 1
1 0

)
⊗
(

1 0
0 1

)}

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


=

4

∑
j=1

ξ j(R j1⊗R j2)

where ξ1 = 1, ξ2 = 1, ξ3 = 1 and ξ4 = 1 and v =
2
∏
i=1

si = 4.
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Also, the C-matrix can be written as

C =


1 −1

2 −
1
2 0

−1
2 1 0 −1

2
−1

2 0 1 −1
2

0 −1
2 −

1
2 1


=

1
2

{(
1 0
0 1

)
⊗
(

1 0
0 1

)}
+

1
2

{(
1 0
0 1

)
⊗
(

1 0
0 1

)}
+(−1

2
)

{(
1 0
0 1

)
⊗
(

0 1
1 0

)}
+(−1

2
)

{(
0 1
1 0

)
⊗
(

1 0
0 1

)}
=

4

∑
j=1

ξ j(R j1⊗R j2)

where ξ1 =
1
2 , ξ2 =

1
2 , ξ3 =−1

2 and ξ4 =−1
2 .

Hence the above hypercubic design possesses structure (k1) property. In a similar way, we can
express ÑÑ

′
and C̃ as linear combinations of Kronecker products of proper matrices of order s1

and s2. Now, it is clear that the hypercubic design possesses structure (k2) and structure (k1k2)

properties. Note that it also holds the property that structure (k1) and structure (k2) implies structure
(k1k2).

6. Optimal R-type structure (k) designs

We will use 0,1, . . . ,v to denote the (v+1) treatments being studied, with 0 representing the control
treatment and 1,2, . . . ,v representing the test treatments. In this section, we consider those designs
that have equal block sizes for comparing several test treatments with a control. Assuming that
homoscedasticity is satisfied, we study these designs with respect to the trace, A- and MV -optimality
criteria.

Here we will use d(v
′
,b,k

′
) to denote some particular block design that can be used in an exper-

imental setting. The structure (k) design in the previous example is not optimal within the test
treatments. However, if we augment one control in each block of such design, then we see that
structure (k) design discussed in the example is optimal in the test treatment versus control treat-
ment. It is interesting to see that augmented structure (k) design satisfy trace, A- and MV -optimality
criteria. Here the augmented structure (k) design also satisfy the condition r0 = b, that is, replica-
tion of the control treatment is equal to number of blocks of the design d. So we call it an optimal
R-type structure (k) design. Thus, using the previous example, a R-type structure (k) design can be
obtained as

0 0 0 0
1 2 1 3
3 4 2 4

In this example, we see that v = 4, b = 4, k
′
= 3, r0 = 4, m = 2, n = 2, λ0 = 2, λ1 = 0, λ2 = 1,

trC−1
d11 = 3.5,

m1(4) = b(k−1)/vk = 0.666666

m2(4)= {(A−m1(4))− [(v−1)/(v−2)]1/2P1}/(v−1)=(4.666667−0.666667)/3 = 1.33334
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where
A = b(k−1)2/k = 16/3 = 5.333333.

P1 = [(B− (m1(4))2)− (A−m1(4))2/(v−1)]1/2 = [7.555556−7.259260]1/2 = 0.544331

B = trC2
d11 = 8

and
H2(4) = (1/m1(4))+((v−1)/m4(4)) = 1.500002+2.25001 = 3.750003

where

m4(4) = {A− (2/k)−m1(4)}/(v−1) = {5.333333− 2
3 −0.666666}/3 = 1.333333.

Here Cd = diag(rd0, . . . ,rdv)− 1
k NdN

′
d where diag(rd0, . . . ,rdv) denotes a (v+1)× (v+1) diag-

onal matrix and the ith row sum of Nd is denoted by rdi which represents the number of times
treatment i is replicated in the design. The matrix Cd is called the C-matrix of design d and is posi-
tive semi-definite with zero row sums. In the above example, the incidence matrix and C matrix of
design d are

Nd =


1 1 1 1
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1



NdN
′
d =


4 2 2 2 2
2 2 1 1 0
2 1 2 0 1
2 1 0 2 1
2 0 1 1 2



Cd =


8
3 −

2
3 −

2
3 −

2
3 −

2
3

−2
3

4
3 −

1
3 −

1
3 0

−2
3 −

1
3

4
3 0 −1

3
−2

3 −
1
3 0 4

3 −
1
3

−2
3 0 −1

3 −
1
3

4
3

 .

Now we need to verify that the above structure (k) design satisfies trace, A- and MV -optimality
criteria. Here we see that control treatment is replicated once in each block. So this is an SR(1)
design. It is also obvious from the above example that in the original design all blocks have the same
size, all the test treatments are replicated same number of times in blocks and v = mn = 2×2 = 4
treatments are divided into 2 disjoint sets of size 2 such that the treatment in the same group occur
in λ1 = 0 blocks together whereas treatment occurring in different groups occur in λ2 = 1 blocks
together. So it is a Group Divisible Design. Clearly, the design d satisfies all the conditions of
Lemma 2.5 and hence the design d is trace optimal.

We will now show that the design d constructed in the above example is A-optimal.
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From the above structure (k) design, we observe that

m1(4) = 0.666666 < m2(4) = 1.33334

trC−1
d11 = 3.5 < H2(4) = 3.750003

where Cd11 is the principal submatrix obtained from Cd after deleting row 1 and column 1. So the
design d satisfies all the conditions of Theorem 2.4 and hence the above structure (k) design is
A-optimal.

We will now show that the design d is MV -optimal. We first calculate the following:

N(r0) = [ r0
b ] = 1

λ (r0) = (r0−bN(r0))(N(r0)+1)2 +(b− r0 +bN(r0))N2(r0) = 4

R(r0) = [(bk− r0)/v)] = 8
4 = 2

r0k−λ (r0) = 12−4 = 8

λ̄0 = (r0k−λ (r0))/v = 2, λ̄1 = [(R(r0)(k−1)− λ̄0)/(v−1)] = [0.7] = 0, λ̄2 = λ̄1 +1 = 1

m̄k = (k/vλ̄0)+((v̄−1)sk/v(v̄(s−1)λ̄2 + vλ̄1 + λ̄0))+((s−1)k/v(vλ̄2 + λ̄0)) =
7
8 = 0.875 with

v̄ = v/s = 2.

c̄d00 = (r0k−λ (r0))/k = 2.666667

c̄dii = R(r0)(k−1)/k = 1.333333

c̄dio =−(λ̄0−1)/k =−0.333333

c̄d j j = (R(r0)(k−1)−2)/2 = 0.666667

c̄d j0 =−λ̄0/k =−0.666667

c̄d pp = c̄dqq = R(r0)(k−1)/k = 1.333333

c̄d p0 = c̄dq0 =−λ̄0/k =−0.666667

-c̄d pq = (λ̄1−1)/k =−0.333333.

Now we verify the four conditions of Theorem 2.5.

(1) r0k−λ (r0)−2 = 8−2 = 6 < vB(r0k−λ (r0)−2,R(r0)(k−1)) = 8.8625
(2) 1/(R(r0)−1)(k−1) = 0.5 > m̄ = 0.2917
(3) m̄k = 0.875 < min{(c̄d00 + c̄dii + 2c̄di0)/(c̄d00c̄dii− c̄2

dio),(c̄d00 + c̄d j j + 2c̄d j0)/(c̄d00c̄d j j−
c̄2

d j0)}= 0.967742
(4) m̄k = 0.875 < {c̄d pp(c̄d00 + c̄dqq + 2c̄d pq)− (c̄d p0 + c̄d pq)

2}/{c̄d00c̄d ppc̄dqq − c̄d00c̄2
d pq −

c̄d ppc̄2
dq0− c̄dqqc̄2

d p0 +2c̄d p0c̄dq0c̄d pq}= 1.145833

We see that the conditions given in Theorem 2.5 are verified. Thus, the above structure (k)
design is MV -optimal. Hence we conclude that the design d(5,4,3) is trace, A- and MV -optimal
design.
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