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This paper introduces a multivariate skew Gaussian process and uses it to extend the family of multivariate
spatial generalized linear mixed models to include skew Gaussian random effects. In this setting, the param-
eter estimation encounters problems because the likelihood function involves high dimensional integrations
which are computationally intensive. For estimating parameters of the complicated model structure, this article
proposes an algorithm which is a combination of boosting with a variant of stochastic approximation. This
algorithm which known as stochastic approximation boosting (SAB) algorithm, uses the Markov chain Monte
Carlo method based on slice sampling to obtain simulations from full conditional distribution of random effects.
A simulation study is conducted to assess the performance of our method. The proposed methodology is further
illustrated through an application to a data set of soil pollution in a province of Iran.
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1. Introduction

Spatial generalized linear mixed models (SGLMMs) as a special class of spatial random effects
models have been a popular method for analyzing the spatial variables. In fact, they are described
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in terms of unobservable spatial random effect which is linked to the observed variable through a
link function. In the univariate response case, Bayesian analysis for SGLMMs includes [7], [4], [6]
and [8]. Apart from the Bayesian method, [17] determined the maximum likelihood estimations
of model parameters using a Monte Carlo EM (MCEM) algorithm. [16] also proposed a pair-
wise likelihood approach which is useful to deal with estimation and inference in SGLMMs with
high-dimensional data. Considering an integrated likelihood function, [5] provided the Monte Carlo
approximation to the likelihood.
In all aforementioned works, normality of the underlying random effects is a basic assumption.
Moreover, spatial data collection increasingly turns to vector valued measurements at spatial loca-
tions. In this paper, we focus on the situation in which multivariate responses are observed simulta-
neously on each locations. Thus in particular, a multivariate spatial generalized linear mixed model
is used to analyze the spatial variables. In order to relax unrealistic normality assumption, this arti-
cle also considers a multivariate skew Gaussian random field for random effects. [11] defined a
skew Gaussian random field based on the multivariate skew normal distribution ( [2] and [3]). [9]
remarked identifiability problems associated with this model. In a different way, [18] recently intro-
duced a class of stationary processes that have skewed marginal distributions. A key feature of this
model is that it is formulated as a linear combination of a Gaussian process and absolute of further
Gaussian process, which is useful for random number generation and for theoretical derivations. By
introducing the multivariate case of this skew Gaussian process and modeling random effects based
on it, we investigate how to obtain maximum likelihood estimations of parameters. Within the clas-
sical likelihood framework, fitting these complex models via the Monte Carlo EM algorithm can be
computationally challenging since this method involves high dimensional optimizations. In addi-
tion, because of difficulties in determining integrated likelihood function, the Monte Carlo approx-
imation of the likelihood as in [5] is so hard to provide. Moreover, this method requires a proper
reference point. Updating the reference point (as proposed by [5]) is only an ad hoc solution and
convergence to the true MLE cannot be proven theoretically.
To overcome complicated model-structure, we explore another algorithmic avenue. In fact, a
stochastic approximation boosting (SAB) algorithm of [?] is proposed for the maximum likelihood
inference in the multivariate SGLMMs. This algorithm combines boosting which is a very flexible
and powerful tool, with stochastic approximation method (was originally introduced by [14] and
extended by [10]) which is similar to the SAEM method ( [12]). Generally, the Robbins-Monro
procedure is a stochastic root-finding method and the component-wise boosting approach makes
the technique straightforward to implement. With regard to problems remain with convergence
and mixing properties of Metropolis-Hastings algorithm, as well as there is no routine to choose
an appropriate candidate distribution for this algorithm, we will introduce auxiliary variables and
employ the slice sampling method ( [13]) to simulate from full conditional distribution of random
effects. Actually, this is a technique of generating from an arbitrary variables by introducing an
auxiliary variable and sampling from two or more uniform distributions.

The article is organized as follows. Section 2 introduces the multivariate SGLMM with skew
Gaussian random effects and outlines the details of method for parameter estimation. Then, it gives
the proposed method for spatial prediction. Section 3 explores a simulation experiment to assess the
effectiveness of the proposed method. In Section 4, we apply this method in order to analyze a data
set related to soil pollution. The paper ends with a brief concluding remark.
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2. Statistical Model

The considered multivariate SGLMM is set up by the following components. Suppose we observe
p random variables in the set of locations x = {x1, ...,xn}. Let y j = (y1 j, · · · ,yn j)

′, j = 1, · · · , p, as
a realization of Y j = (Y1 j, · · · ,Yn j)

′, represents the data measured at the sampling locations corre-
sponding to the j-th response. Let y = (y′1, · · · ,y′p)′ be the vector of all variables at all sampling
locations. By extending the skew Gaussian model of [18] to the multivariate case, we define the
p-dimensional random process S(x) = (S1(x), · · · ,Sp(x))′ such that:

S j(x) = α j|Vj(x)|+σ jU j(x), j = 1, · · · , p,

as a multivariate skew Gaussian process. In above equation, α j ∈ R, σ j > 0, V(x) =

(V1(x), · · · ,Vp(x))′ and U(x) = (U1(x), · · · ,Up(x))′ are independent multivariate stationary Gaus-
sian processes with zero means and covariance matrices CV (·;θ1) and CU(·;θ2), respectively.
Notice that S j(x)

(α2
j +σ2

j )
1
2

has a skew normal distribution with the shape parameter α j
σ j

. We have

V = (V′(x1), · · · ,V′(xn))
′ ∼ Nnp(0,Σθ1) and U = (U′(x1), · · · ,U′(xn))

′ ∼ Nnp(0,Σθ2), respectively,
where Σθ1 and Σθ2 are the covariance matrix of dimension np× np. These matrices are specified
through parametric structures describing the spatial dependency as well as the correlation between
the responses. We could use a linear model of coregionalization for V and U. Although, for conve-
nience, we define Σθ1 = B1(ϕ1)⊗C1(γ1), where B1(ϕ1) is the matrix specified through the correla-
tion function ρ1(·;ϕ1) and the matrix C1(γ1) defines the correlation between responses. The param-
eter vector θ1 = (ϕ1,γ1) denotes the whole parameters included in matrices B1(ϕ1) and C1(γ1).
Similarly, the covariance matrix Σθ2 is defined.
Conditional on the realized values of latent random variables V and U, we suppose that Yi j are
mutually independent with distributions f j(y|U j(xi),Vj(xi)) = f (y;M j(xi)) of an exponential fam-
ily, specified by the values of the conditional expectations M j(xi) = E(Yi j|U j(xi),Vj(xi));

M j(xi) = g−1
j

(
d j(xi)

T β j +α j|Vj(xi)|+σ jU j(xi)
)
,

for some known link function g j. The q j × 1 vector β j shows regression coefficients. Then, the
likelihood function of the model parameters η = (β1, · · · ,βp,α1, · · · ,αp,σ1, · · · ,
σp,θ1,θ2) by marginalizing can be written as:

L(η ;y) =
∫

f (y,u,v|η)dudv

=
∫

f (y|u,v,η)π(u,v|η)dudv. (2.1)

The ML estimate of parameters vector η̂ is the value of η which maximizes the likelihood function
(2.1). Because L(η ;y) involves a high-dimensional intractable integral, it is infeasible to maxi-
mize the likelihood function of observed data directly. The maximum likelihood estimate η̂ can be
obtained as a solution to h(η̂ ;y) = 0, where the function h is

h(η ;y) =
∂ lnL(η ;y)

∂η
= E

(∂ ln f (y,u,v|η)

∂η
|y)

=
∫ ∂ ln f (y,u,v|η)

∂η
π(u,v|η ,y)dudv.
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2.1. Monte Carlo approximation of function h

Suppose we know the values of all parameters in the vector η . As the distribution π(u,v|y,η) can
not be analytically solved, then one can apply Markov chain Monte Carlo methods to sample from
it and approximate the function h. To implement this, a Gibbs sampling algorithm could be applied.
The algorithm iteratively proceeds through update the latent variables u and v based on sampling
from their complete conditional distributions:

π(u|y,v,η) ∝ f (y|u,v,η)π(u)

∝
p

∏
j=1

n

∏
i=1

f (yi j|U j(xi),Vj(xi),η)exp
(
− 1

2
(uT Σ−1

θ1
u)
)
,

π(v|y,u,η) ∝ f (y|u,v,η)π(v)

∝
p

∏
j=1

n

∏
i=1

f (yi j|U j(xi),Vj(xi),η)exp
(
− 1

2
(vT Σ−1

θ2
v)
)
.

These full conditionals do not define standard probability distributions. So drawings from them are
not that trivial to conduct. To solve this problem, the Metropolis-Hastings algorithm could be used.
Although this algorithm requires effective proposal density with careful tuning which are difficult
to provide in our problem. Recently, auxiliary variable methods based on slice sampler is found to
provide an attractive strategy hence, are receiving utmost attention by those who used the Markov
chain Monte Carlo (MCMC) algorithms to simulate from complex nonnormalized multivariate den-
sities ( [13]). In this paper, for sampling from the full conditional π(u|y,u,η), we implement slice
sampling algorithm based on two auxiliary variables ( [1]). Similarly, draws could be obtained from
π(v|y,u,η). Specifically, if Z1|y,u,v,η and Z2|u have the uniform distribution on the intervals
[0, f (y|u,v,η)] and [0,π(u)], respectively, then

π(Z1,Z2,u|y,v,η) ∝ I{Z1< f (y|u,v,η)}I{Z2<π(u)}, (2.2)

where I denotes the indicator function.Thus,

π(u|y,v,Z1,Z2) ∝ I{Z1< f (y|u,v,η)}I{Z2<π(u)}. (2.3)

Now, if e1 and e2 represent exponential distribution with mean 1, say exp(1), then logZ1 =

log f (y|u,v,η)−e1 and logZ2 = logπ(u)−e2, given y,v,η . Based on these assumptions, we intro-
duce an algorithm for sampling of π(u|y,u,η). Indeed, given y,v(t),η , we can summarize the main
steps in iteration (t +1)th of the slice sampling algorithm as:

(1) Draw e(t+1)
1 and e(t+1)

2 of exp(1), and let
at = log f (y|u(t),v(t),η)− e(t+1)

1 , bt = logπ(u(t))− e(t+1)
2 .

(2) Draw u(t+1) from a uniform distribution on
{at < log f (y|u,v(t),η)}

∩
{bt < logπ(u)− e(t+1)

2 }.

At iteration t + 1 of the algorithm, let Πη(u,v,A) = Pη [(U(t+1),V(t+1)) ∈ A|u(t) = u,V(t) = v] be
the Markov transition with π(u,v|y,η) as its unique stationary distribution.
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2.2. Maximum Likelihood Estimation

The likelihood function (2.1) does not have a simple form and direct maximization of it seems
intractable. Here, we propose using the Stochastic Approximation Boosting algorithm, proposed by
[?], to obtain the ML estimates in the context of the spatial generalized linear mixed models. Really,
the component-wise boosting approach makes the algorithm straightforward to implement. We now
consider and implement a SAB algorithm. For this purpose, we use the notation η = (η1,η2,η3)

′

for model parameters where η1 = (β1, · · · ,βp,σ1, · · · ,σp,α1, · · · ,αp), η2 = θ1 and η3 = θ2. For
j = 1,2,3, we also set H j(η ,U,V) = ∂ ln f (y,U,V|η)

∂η j
, i.e

H1(η ,U,V) =
∂ ln f (y|U,V,η1)

∂η1
,

H2(η ,U,V) =
∂ lnπ(U|η2)

∂η2
,

H3(η ,U,V) =
∂ lnπ(V|η3)

∂η3
,

and I j(η ,U,V) = − ∂H j(η ,U,V)
∂η j

−H2
j (η ,U,V). Differentiations with respect to parameters could be

simply determined, so we omit the details. In the SAB algorithm, instead of updating the whole
parameters vector η = (η1,η2,η3)

′, a component of η is chosen and only this component is updated
with other component being kept fixed. Specifically, the algorithm goes as follows:

Slice-SAB algorithm
Step 0: Choose initial values Γ(0)

j and η(0)
j , j = 1,2,3, U(0)

m and V(0)
m and set t = 1.

Step 1: Given t: Set U(t)
0 =U(t−1)

m and V(t)
0 =V(t−1)

m , and for k = 1 · · · ,m, generate U(t)
k and V(t)

k from
the Markov transition probability Πη(t−1)(u(t)

k−1,v
(t)
k−1, ·) based on the proposed MCMC algorithm.

Step 2: For j = 1, · · · ,r, update the estimates as follows:

Γ(t)
j = Γ(t−1)

j + γ{Ī j(η(t−1),U(t),V(t))−Γ(t−1)
j }

δ (t)
j = γ(Γ(t)

j )−1H̄ j(η (t−1),U(t),V(t))

where U(t) = (U(t)
1 , · · · ,U(t)

m ) and V(t) = (V(t)
1 , · · · ,V(t)

m ) and

Ī j(η(t−1),U(t),V(t)) =
1
m

m

∑
k=1

I j(η(t−1),U(t)
k ,V(t)

k )

H̄ j(η(t−1),U(t),V(t)) =
1
m

m

∑
k=1

H j(η(t−1),U(t)
k ,V(t)

k ).

Step 3: Select component St = argmax j δ (t)
j

′

H̄ j(η(t−1),U(t),V(t)).

Step 4: Update η(t)
St

= η(t−1)
St

+δ (t)
St

and η(t)
j = η(t−1)

j for j ̸= St . Hence η(t) is defined.
Step 5: Set t = t +1 and go step 1 until the sequence {η (t)} converges.
It must be noted that in the algorithm, the parameter m represents the total number of Monte Carlo
simulations in each iteration. To ensure against to a local, rather than global maximum, the proposed
algorithm should be executed from multiple initial values.
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2.3. Prediction at new locations

An important goal of the SGLMM is prediction of random effects at new locations. In what follows,
we consider the prediction of random effects at location x0, say S0 = (S1(x0), · · · ,Sp(x0))

′, based on
the predictive distribution

f (S0|y, η̂) =
∫ ∫ ∫

f (S0,u,v,u0|y, η̂)dudvdu0

=
∫ ∫ ∫

f (S0|u0,u,v, η̂) f (u0|u, η̂)π(u,v|y, η̂)dudvdu0,

(2.4)

where u0 denotes the unknown latent values at new location and f (S0|u0,u,v, η̂) and f (u0|u, η̂)

are conveniently normal distributions. To estimate the predictive distribution (2.4), we first use
the described algorithm to obtain J draws after burn-in period from π(u,v|η̂). Simulating from
f (S0|u0,u,v, η̂), in which u( j)

0 , j = 1, · · · ,J are generated from f (u0|u( j), η̂), we can sample from
f (S0|y, η̂), say [S0]

( j), j = 1, · · · ,J. Then, a prediction of S0 could simply made by these values.

3. Simulation Study

To examine the performance of the proposed method in estimation of parameters and compare
the results of skew normal and normal prior models for multivariate spatial GLMMs, a simula-
tion example is conducted. We also compare the obtained estimates by univariate and multivariate
procedures in estimating of regression parameters which have the same interpretation in assumed
models. In this example, we simulate 50 data sets from bivariate spatial Poisson model with skew
normal random effects on two small and medium equally spaced regular grids of locations, 10×10
and 30×30 in the region of the unit square D = [0,1]× [0,1]. Specifically, we consider the condi-
tionally mean M j

(
x1,x2

)
= exp{β0 j +β1 jx1+β2 jx2+S j

(
x1,x2

)
}, j = 1,2, with β1 = (0,0.1,−0.1)

and β2 = (0,−0.2,0.2). Let S1(·) and S2(·) be skew Gaussian random fields with α1 = 5, α2 = 10,
σ2

1 = σ 2
2 = 1, ρ1(h;ϕ1) = ρ2(h;ϕ2) = exp(−||h||) and γ1 = γ2 = 0.7. Here, the spatial correlation

function for two latent processes V (·) and U(·) are exponential with ϕ1 = ϕ2 = 1. Each simulated
data set is analyzed by the bivariate spatial GLMM under the assumptions of skew normal and
normal random effects as well as univariate and bivariate cases. By setting the true parameters as
starting values, we applied the slice-SAB algorithm for finding the maximum likelihood estimates
of the model parameters. The slice-SAB algorithm is implemented with the total number of Monte
Carlo simulations performed at each iteration as m = 100.

Now, in order to illustrate the performance of the method, we obtain two measures, the average
of bias and the root of mean-square error of regression parameters estimate, i.e. β̂11, β̂12 and β̂21, β̂22.
The results are summarized in Table 1. As seen, the bivariate model with skew Gaussian random
effects (SN-BSGLG) has the best performance, in the sense that the estimates under this model
are most appropriate than those of the bivariate model with Gaussian random effects (N-BSGLG)
and the univariate models with skew Gaussian random effects (SN-USGLG). Beside that, for n =

30× 30, the bias and MSE of the SN-USGLG model are lower than those of N-BSGLG in most
cases. For more comparisons, we fitted two multivariate models for 50 simulated data sets and then
calculated the Akaike information criterion (AIC). The mean±1.96×standard error of AIC values
based on 50 replications were obtained as (708.805,815.481) and (919.146,1087.427), respectively.
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We can imply as a result of this table that the proposed method gives satisfactory results and brought
valid inference.

Table 1 Bias and mean square errors of regression parameters estimate under various models
True Value Normal BSGLMM Skew-Normal BSGLMM Skew-Normal USGLMM

Bias MSE Bias MSE Bias MSE
β11 = 0.1 -0.4262 0.0402 0.1097 0.0105 0.3058 0.0784
β21 =−0.1 0.3175 0.0306 -0.0716 0.0100 0.3296 0.0523

Grid 10×10
β21 =−0.2 -0.3690 0.0505 -0.1893 0.0085 0.1641 0.0337
β22 = 0.2 -0.2070 0.0370 -0.0980 0.0098 -0.3472 0.0693
β11 = 0.1 -0.2701 0.0358 0.0878 0.0095 -0.0812 0.0091
β21 =−0.1 0.1922 0.0260 -0.0521 0.0059 0.2019 0.0322

Grid 30×30
β21 =−0.2 -0.1789 0.0144 -0.1384 0.0078 0.1272 0.0206
β22 = 0.2 0.1967 0.0400 0.0259 0.0039 -0.1365 0.0081

4. Numerical Example

An application of the proposed model to soil pollutant data in Golestan province, located in north
of Iran, is presented. Soil pollution is a widespread problem and can be harmful to plants, animals
and humans. Specially, soil influences human health directly because the different elements in the
soil can easily be absorbed by plants. The analyzed data set comprises a total of 215 locations
that were collected for mapping the beryllium (Be) and lead (Pb) contaminated areas in soil of
Golestan province. In this data set which measured by a university research, the values of two
heavy metals have been reported as a binary variable by clipping them via permissible thresholds.
Sampling locations and the responses values are shown in Figure 1. As observed two variables
behave similarly in the study region which indicates strong correlation between them. Consider now
two response variables Y (x) = (Y1(x),Y2(x)), where Y1(x) and Y2(x) are one if the measurements
of Br and Pb exceed safety or standard limits at location x. Hence, we use a bivariate SGLMM
model with bernoulli responses and logit link. In the absence of any regression covariates, the mean
function is assumed to be constant. To determine proper initial values, the slice-SAB algorithm
was first run in the univariate case for each variable, and the estimates thus obtained were used as
initial values for the bivariate procedure. Note that the weighted least squares fits provided starting
values for single response variables. In the slice-SAB algorithm, the total number of Monte Carlo
simulations performed at each iteration was chosen m = 100.

Based on the slice-SAB algorithm, the parameter estimates are obtained as:
(β̂01 , β̂02 , σ̂ 2

1 , σ̂2
2 , α̂1, α̂2, ϕ̂1, ϕ̂2, γ̂) =(−1.278,−1.699,3.921,4.413,2.532,1.982,0.360,0.124,0.591).

To make a comparison, we also apply the proposed algorithm for the bivariate SGLMM with Gaus-
sian random effects. Now, we compare the performance of the two models Based on AIC criterion.
The values of this criterion were obtained as 426.891 and 773.257, respectively, which shows the
advantage of working with the proposed model in this application. Finally, the prediction maps of
two heavy metals were plotted in Figure 2 to identify contaminated areas and better understand soil
pollution condition of the region.
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Fig. 1. Sampled locations and values of (a) Pb and (b) Be.
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Fig. 2. The prediction map corresponding to probability of pollution of (a) Pb, (b) Be.

5. Concluding Remarks

The main aim of this paper was to introduce a multivariate skew Gaussian random process and use it
in the structure of spatial generalized linear mixed models. Further, we showed how ML estimates
of this complex and high dimensional model can be computed using a stochastic approximation
boosting algorithm. This method eliminates the costs of computing numerical approximation. In
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addition, our results showed that the slice-SAB algorithm gives reasonable parameter estimates. As
a result from the simulation and numerical examples, we came to the conclusion that the bivariate
skew Gaussian random effects model outperforms the bivariate Gaussian random effects model.
The special case considered in this paper includes a skew Gaussian random field for the random
effects, though the proposed algorithm could be generalized to more complex model for random
effects instead of the skew Gaussian random field. In this setting, the computational burden might
increase. This is an interesting area to investigate in further research.
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