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Abstract. This paper applies bootstrap methods to LM-lag test for spatial dependence in panel data 
models, and LM-lag test is asymptotic pivotal. The consistencies of LM tests and their bootstrap 
versions are proved, and then the asymptotic refinements of bootstrap LM tests are obtained. It 
shows that the first order asymptotic distribution of LM-lag test converges as ))(( 1−NTO , and the 
convergence rate of bootstrap LM-lag test is ))(( 2−NTO . The error made by the bootstrap LM-lag 
test approximation to the asymptotic distribution is ))(( 2/3−NTO . Compared to asymptotic 
distribution of LM-lag test, bootstrap LM-lag test gets asymptotic refinements. 

1. Introduction 
The bootstrap is a method for estimating the distribution of an estimator or test statistic by 
resampling one’s data or a model estimated from the data (Horowitz, 2001). So far, bootstrap is 
widely applied in cross sectional data, time series and panel data. Many scholars investigate the 
performance of bootstrap methods in terms of simulation analysis, and few provide the 
corresponding mathematical proof.  

In the classical econometrics, the performance of bootstrap methods is derived based on 
Edgeworth expansion by Beran (1988), Hall (1992), Horowitz (2001), Hall and Horowitz (1996), 
Cameron and Trivedi (2005), Godfrey (2009). Recently, bootstrap is extensively focused on its 
applications in spatial econometrics. Lin et al. (2011) investigate the performance of bootstrap 
Moran's I test for spatial dependence in cross sectional data, and find that bootstrap Moran's test for 
spatial dependence is superior to asymptotic Moran's I test in terms of mathematical derivation and 
Monte Carlo experiments.  

Tests for spatial dependence are one of the important essentials in spatial econometric analysis. 
Both Moran's I and LM tests are usually applied for spatial dependence in cross sectional data and 
panel data. Many Monte Carlo experiments show that LM tests for spatial dependence have good 
finite sample properties when the disturbances are normal, however when the disturbances are not 
normal or with heteroskedasticity, LM tests can have large size distortion and lower power (Anselin 
et al. (1996), Yang (2015)). So far there are three important and closely associated studies in 
mathematically derivation. Long et al. (2012) use Edgeworth expansion to prove the validity of 
bootstrap Moran's I tests for spatial dependence in cross sectional data. Jin and Lee (2015) prove the 
existence of the Edgeworth expansions for LQ forms with the normal disturbances, and establish an 
asymptotic expansion of LQ forms based on martingales with no normal disturbances. Yang (2015) 
find that in finite samples, the LM test referring to asymptotic critical values may suffer from the 
problems of size distortion and low power, which become worse with a denser spatial weight matrix, 
and introduces residual-based bootstrap methods to refine asymptotically approximations to the 
finite sample critical values of the LM statistics. In a word, Edgeworth expansion proposed by Hall 
(1992) is still the most feasible method that mathematically derives the validity of bootstrap 
methods. However, all above studies are focused on tests for spatial dependence in cross sectional 
data. This paper will firstly extend bootstrap LM tests for spatial dependence from cross sectional 
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data to panel data, and discuss the performance of bootstrap LM tests for spatial dependence in 
panel data models with fixed effects. LM tests in this paper include LM-lag test for spatially lagged 
dependent variable, and LM-error test for spatial residual autocorrelation. 

The rest of the paper is organized as follows: Section 2 introduces LM-lag test. Section 3 first 
provides assumptions, then shows that the bootstrap is consistent for LM tests, and finally proposes 
the asymptotic refinement of bootstrap LM tests. Section 4 concludes. 

2. LM-lag test for spatial dependence 
LM tests for spatial dependence in panel data models mainly include LM-lag test, LM-error test. 
LM-lag and LM-error tests can respectively identify spatial correlation in the error and spatial 
dependence in the dependent variable. LM-lag test in panel data models is as follows (Elhorst, 2010; 
Anselin, et al., 2008): 

2 2[ '( ) / ]Te I W YLM lag
J

σ⊗
− =                             (1) 

Where ⊗  denotes Kronecker product, [( ') ]WT trace W W W= +  is the trace of the matrix (W+W')W, 
1 2ˆ ˆ(( ) ) '( ( ' ) ')(( ) ) /T NT T WJ I W X I X X X X I W X TTβ β σ−= ⊗ − ⊗ + , 2 ' /e e NTσ =  denotes the 

variance of the residuals, W is a row-standardized exogenous spatial weights matrix, T is the 
number of time periods. LM-lag test asymptotically follows the )1(2χ  distribution. To 
conveniently study the performance of bootstrap LM-lag test, in view of related jobs (Burridge, 
1980; Yang, 2015), the transformation of equation (1) is the following:  

'( )
'

Te I W YNTLM lag
e eJ
⊗

− =                              (2) 

LM-lag test in equation (2) is asymptotically distributed as N(0,1). 

3. Asymptotic refinements of Bootstrap LM-lag test 
In the literature, Anselin (1988), Anselin et al. (1996, 2008) and Elhorst et al. (2010) investigate 
LM tests for spatial dependence. Beran (1988), Hall (1992) and Horowitz (1994, 2001) discuss and 
study the performance of bootstrap methods. Inside, Long et al. (2012), Jin and Yu (2015) and Yang 
(2015) consider bootstrap methods in cross sectional data. In this section, we make use of bootstrap 
methods to establish LM-lag test for spatial dependence based on OLS residuals in panel data 
models, and derive the validity of bootstrap LM-lag test with the standard normal disturbance in 
finite sample. 
3.1 Assumptions 

In order to prove the validity of bootstrap LM-lag test in panel data models, we assume the 
following assumptions: 

Assumption 1 W is a non-negative, non-stochastic and row-normalized spatial weights matrix 
and fixed through time. Moreover, wii=0 for Ni ,,1= . Finally, the matrix is assumed to be 
uniformly bounded in row and column sums in absolute value. 

Assumption 2 The ),,1;,,1( TtNiuit  == errors are identically and independently 
distributed across i and t with zero mean and variance. Moreover ∞<+η4|| ituE  for some 0>η . 

Assumption 3The regressor matrix X has full column rank, and its elements are non-stochastic 
and uniformly bounded in N and T.  

Assumption 4 WIS NN λλ −=)( , WIR NN ρλ −=)(  and WIQ NN θθ +=)( are invertible for 
all Λ∈λ , Ρ∈ρ  and Η∈θ , where Λ , Ρ  and H are compact intervals. 

Assumption 5 ∑
=

∞→

T

t
ttN
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Assumption 6 The disturbance itu  and the independent variable itX  are not correlation. 
Assumption 7 N is large, where T can be finite or large. 

3.2 Consistency 
Let )(xΦ  be the cumulative distribution function (CDF) for a standard normal random 

variable x, )(xFNT be the empirical distribution function (EDF) of the residuals. According to 
Glivenko-Cantelli theorem, as ∞→NT , )(xFNT  is almost surely convergence to )(xΦ  owing to 

)(xΦ  be a continuous function. To define the sample cumulative distribution functions of LM-lag 
test is as follows, )()( xLMPxG NTNT ≤= , where LMNT denotes LM-lag test in equation (2). 

Theorem 1: Under assumptions 1-7,  
NTNT

Rx
rxxG =Φ−

∈
)()(sup  

** )()(sup NTNT
Rx

rxxG =Φ−
∈

 

Where )()( ** xLMPxG NTNT ≤= is the probability distribution function of bootstrap LM-lag test ,
))(( 2/1−= NTOrNT . The population moments of rNT is replaced by the corresponding sample 

moment, and obtains *
NTr . 

The left of the above first equation is the distance of Kolmogorov-Smirnov of two CDFs, and 
the right is the convergence rate of the CDF of LM-lag test in finite sample. Its bootstrap version is 
given in the latter two. The derivation of theorem 1 is similar to Jin and Yu (2015) (Page 298), and 
then no repeat here. According to Horowitz (2001), Jin and Yu (2015), Yang (2015) and Hall 
(1992), if all the above four equation are established, the CDFs of bootstrap LM-lag test uniformly 
converges to that of the corresponding LM-lag test. 

According to Horowitz (2001, Page 3166), bootstrap LM-lag test is defined by 0>∃ε , if
0])()(sup[lim * =>Φ−

∞→
εxxGP NT

xNT , bootstrap LM-lag test is consistent. 

Proposition 1: Under assumption 1-7, LM-lag test in equation (2) is asymptotically zero mean 
and 1 variance. Then the CDF )(* xGNT  of bootstrap LM-lag test is a uniformly consistent estimator 
of its sample cumulative distribution function )(xGNT . Bootstrap LM-lag test is consistency. 

Mammen (1992) and Horowitz (2001, Page 3167) indicate that given { : 1, , }iX i N=   be a 
random sample from a population, for a sequence of functions ng and sequences of numbers nt and

nσ , define 1

1
( )

n

n n i
i

g n g X−
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= ∑  and ( ) /n n n nT g t σ= − . For the bootstrap sample *{ : 1, , }iX i N=  , 

define * 1 *

1
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= ∑ and ( ) /n n n nT g t σ= − . Let ( ) ( )n nG P Tτ τ= ≤ and * * *( ) ( )n nG P Tτ τ= ≤ , 

where *P  is the probability distribution induced by bootstrap sampling. Then *( )nG ⋅  consistently 
estimates nG  if and only if ))(( 2−NTO . 

In this paper, as N tends to large, LM-lag test for spatial dependence in panel data models is 
asymptotically distributed as N(0, 1). Therefore the sufficient and necessary conditions are satisfied, 
which the CDF )(* xGNT of bootstrap LM-lag test consistently converges.  
3.3 Asymptotic refinements 

As we all known, when the statistic is pivotal or asymptotic pivotal, the bootstrap is often more 
accurate in finite samples than first order asymptotic approximations, that is asymptotic refinements 
(Horowitz, 2001). LM-lag test is asymptotically distributed as the standard normal distribution, 
which does not depend on any unknown parameter, and then it is asymptotic pivotal. 

Theorem 2: Under assumptions 1-7 and Cramer conditions which 1)(suplim 1 <
∞→

t
t

χ  is satisfied, 

the convergence rate of the asymptotic distribution of LM-lag test is ))(( 1−NTO , and that of 
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bootstrap LM-lag test is ))(( 2−NTO . Then bootstrap LM-lag test asymptotically obtains refinements, 
where )(1 tχ  is the characteristic function of LM-lag test. 

Due to the limitation of length, to repeat is no more. Because LM-lag test is asymptotic pivotal, 
the convergence rate of bootstrap LM-lag test is, and its first order asymptotic distribution 
converges as ))(( 1−NTO . The error made by the bootstrap LM-lag test approximation to the 
asymptotic distribution is ))(( 2/3−NTO . Compared to asymptotic LM-lag test, bootstrap LM-lag test 
gets asymptotic refinements. 

4. Conclusion 
In this paper, we apply bootstrap methods to LM-lag test for spatial dependence in panel data 
models. The performance of bootstrap LM-lag test in spatial panel data models is investigated. We 
establish that the CDFs of bootstrap LM-lag test uniformly converge to that of LM-lag test. It is 
found that the CDF of bootstrap LM-lag test is a uniformly consistent estimator of its sample 
cumulative distribution function. In other words, bootstrap LM-lag test is consistent. Furthermore, 
based on Edgeworth expansion methods, we obtain that the convergence rate of the asymptotic 
distribution of LM-lag test is ))(( 1−NTO , and that of bootstrap LM-lag test is ))(( 2−NTO . Obviously, 
bootstrap LM-lag test obtains asymptotic refinements. 
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