

A Comparison in Transportation Infrastructure between China and Other Countries

Yuan-cheng HE^{1,a,*}

¹School of economics and management, Huizhou University, Huizhou, China ^aheyuancheng@163.com

Keywords: Logistics infrastructure, Average indicators, Factoring analysis.

Abstract. Comparing 148 countries' z-scores resulting with the Factoring Analysis, the paper verifies that a big gap still exists between China and other advanced countries based on 6 average indicators calculated from CIA statistics in transportation, although China's infrastructure has been considerably improving in both quality and quantity in the past three decades. As a result, the paper advises that keeping increasing the investment in traffic is necessary, particularly in the current situation that Chinese economy is in a depression.

Introduction

In the past more than 3 decades, Chinese economy has increased rapidly and surpassed some established developed countries in economic aggregates at a surprising speed. Until 2010, China had replaced Japan to be the second largest economic entity on Earth. Under such a background, there has existed misleading views of point in the academia that China is already a superpower and an advanced country and the like, neglecting the fact that the majority of basic economic indicators per capita are much lower than the average levels of the world. To identify China's precise and real situation and figure out the gap in traffic infrastructure from developed countries and even other developing ones in the world, the paper first presents several average indicators which are easily available in Chinese National Statistical Bureau to demonstrate the great changes that China has achieved in traffic infrastructure. And then the article makes the Principal Component Analysis (PCA) on 6 average transportation indicators of 151 countries computed from statistical data on CIA website after considering their populations. Afterwards, by visualizing the z-scores of every country, a radar chart shows a relative position of China in the world clearly.

Methodology

In order to assess the current situation of China's transportation infrastructure, it is necessary to look for a group of appropriate indicators. Furthermore, removing the overlapping information loaded on every indicator during applying them to assess is a prerequisite for its success. The Factoring Component Analysis(FCA) and its Principal Component Analysis(PCA) of the statistics software SPSS utilized in this essay are popular and efficient while dealing with a set of invariables which may be relevant and carry similar or repeated information, and with FCA or PCA, the independent indicators in replace of the original ones can be singled out. After that, in order to position China in logistics infrastructure in the world, it also adopts the method of ranking z-score of each case computed from their factoring scores.

Most data in this article is from Central Intelligence Agency of USA, except some

smaller part of it from National Statistical Bureau of China like the numbers of airports, heliports and roadways in three years including 1984, 1999 and 2014. Based on those indicators and the population of China and other countries, the article is designed to utilize 5 average transportation indicators as a unit of per million people. Furthermore, combining other related indicator like income per capita, these 6 indicators may reflect the basic situation of one country in traffic or transportation .Meanwhile, whether or not an indicator is chosen also considerably depends on its availability or not.

Among statistics, two categories are seen frequently: one is absolute values which are related to the size or scale of things, and the other with relative ones, like averages. Obviously, the former indicators can demonstrate the total transportation scale of a region or country and the latter are related to the likes of efficiency, productivity and the quality of life, which present the real development levels of one country. In this paper, there are 6 derived indicators like GDPPC(GDP per capita), APMP(airports per a million people), PPMP(pipelines per a million people), RPMP(railways per a million people), WPMP(roadways per a million people), WPMP(waterways per a million people) which are averaged out from the original data from CIA and standardized so as to be analyzed in PCA analysis. The sample of the article almost includes all important countries in the world whose sizes are no less than Brunei and the total number is 148 sovereign nations and the European Union. And most data is directly and indirectly from the World Factbook of 2016 on the website of CIA.

Analyzing Methods

The Factoring Analysis of SPSS is a main studying method the paper employs, apart from a comparative method at the end of it. The two approaches are not only simple but also practicable. At the end of the article, a comparison among the 148 sovereign states is used so as to attain each other's position in the world.

Data and Diagrams

Table 1 and table 2 are increases of China's transportation infrastructure in three different years of 1984, 1999 and 2014, at 15-year intervals. Consequently, they basically reflect its basic situations in different periods of time.

Modes of	years			
transport	1984	1999	2014	
airports	88	142	200	
railways	5.48	6.74	11.18	
waterways	10.93	11.65	12.63	
pipelines	1.1	2.47	10.57	

Table 1. Increases of China in 4 modes of transportation

To identify the transportation increase of China, this table lists lengths of 4 modes of transportation every 15 years. Obviously, in the past three decades, China's growth in transportation is large-scale. For instance, the length of pipelines in 2014 was almost tenfold bigger than that of the year of 1984, and the railway and airport had a twofold increase. In terms of that fact, Chinese achievement in the infrastructure field is undoubtedly outstanding.

Meanwhile, there are similar situations with other indicators in the following:

Year	indicators						
	Population	GDPPC	APMP	PPMP	RPMP	ROPMP	WPMP
	(billion)						
1984	1.04	698	0.084	0.001	0.005	0.089	0.010
1999	1.26	7105	0.004	0.002	0.005	0.107	0.009
2014	1.37	47080	0.068	0.008	0.008	0.326	0.010

Table 2. Increases a million people in different modes of transportation in the same three years

In a sense, China is surely a successful case in transportation construction. However, the whole world is keeping going forward. Furthermore, the concept of development is relative and dynamic instead of being static, keeping updated. Only compared to other countries in the world, it may be possible to have a precise insight into China's growth in infrastructure. The table 3 is calculated from the website of CIA.

Table 3-1. 6 Indicators of 148 countries from GDP per capita to WPMP

countries	indicators					
countries	GDPPC	APMP	PPMP	RPMP	ROPMP	WPMP
Brunei	79700	2	2907	0	7050	486
Burma	5500	1	80	89	610	227
Cambodia	3500	1	0	41	2846	236
China	14100	0	61	140	3003	80
Indonesia	11100	1	86	32	1940	84
Japan	38100	1	37	215	9603	14
North Korea	1800	3	0	298	1023	90
South Korea	36500	2	66	70	2137	33
Laos	5300	6	78	0	5728	666
Malaysia	26300	4	297	61	4732	236
Mongolia	12100	15	0	606	16455	194
Philippines	7300	2	9	10	2142	32
Vietnam	6000	0	9	28	2072	500
Central Asia						
Kazakhstan	24300	5	1429	781	5365	220
Kyrgyzstan	3400	5	88	83	6002	106
Russia	25400	9	1825	612	9011	716
Tajikistan	2700	3	72	83	3390	24
Turkmenistan	16400	5	1721	570	11200	248
Uzbekistan	6100	2	389	125	2962	38
South Asia						
India	6200	0	29	55	3754	12
Bangladesh	3600	0	17	15	126	0
Afghanistan	3600	1	13	0	1195	34
Bhutan	8200	3	0	0	14258	0
Pakistan	5000	1	82	60	1326	0
Nepal	2500	1	0	2	344	0
Sri Lanka	10600	1	0	66	5173	7

Middle East						
Armenia	8500	4	731	255	2549	0
Azerbaijan	18000	4	657	211	5413	0
Georgia	9600	4	562	276	3875	0
Iran	17300	4	252	104	2430	10
Iraq	15500	3	282	61	1609	142
Israel	33700	6	132	155	2307	0
Jordan	12100	2	64	62	887	0
Kuwait	70200	3	308	0	2370	0
Lebanon	18200	1	14	65	1127	0
Oman	44600	40	2490	0	18324	0
Qatar	132100	3	1745	0	4479	0
Saudi Arabia	53600	8	371	50	7977	0
Syria	5100	5	305	120	4095	53
Turkey	20400	1	197	151	4857	15
United Arab Emirates	67600	7	1339	0	706	0
Yemen	2700	2	76	0	2667	0
Australia	65400	21	1524	1625	36184	88
New Zealand	36200	28	594	930	21382	0
Fuji	9000	31	0	656	3783	223
Canada	45600	42	2849	2220	29695	18
United States	55800	42	6924	913	20495	128
Mexico	17500	14	304	126	3102	24
Argentina	22600	26	918	850	5327	253
Bolivia	6500	79	893	324	7452	926
Brazil	15600	20	132	140	7740	245
Chile	23500	27	323	416	4442	0
Colombia	13800	18	326	46	4383	529
Ecuador	11300	27	268	61	2752	95
Guyana	7500	159	0	0	10840	449
Paraguay	8700	118	0	4	4726	457
Peru	12200	6	133	61	4621	289
Suriname	16300	95	86	0	7425	2070
Uruguay	21500	40	125	491	23260	479
Venezuela	16700	15	556	15	3286	243
Albania	11900	1	191	223	5942	14
Austria	47300	6	641	608	15417	41
Belarus	17700	7	908	576	9009	261
Belgium	43600	4	338	317	13601	180
Bosnia and Herzegovina	10500	6	40	250	5929	0
Bulgaria	19100	613	32567	46122	175976	4239
Croatia	21600	15	676	610	6038	176
Cyprus	32800	13	0	0	16823	0
Czech Republic	31600	12	732	904	12275	62

Table 3-2. 6 Indicators of 148 countries from GDP per capita to WPMP

Denmark	45700	14	902	472	13347	72
Estonia	28600	14	686	945	46160	265
European Union	37800	6	0	449	20591	104
Finland	41100	27	308	1081	82893	1461
France	41200	7	351	445	15453	128
Germany	46900	7	425	538	7977	92
Greece	26400	7	132	236	10854	1
Hungary	26200	4	2107	813	20571	164
Ireland	55500	8	439	662	19630	195
Iceland	46100	289	0	0	38835	0
Italy	35700	2	371	326	7885	39
Latvia	24700	21	575	1127	36462	151
Lithuania	28400	21	708	613	29179	153
Luxembourg	99000	4	296	482	5084	65
Macedonia	1400	5	185	333	6766	0
Moldova	5000	2	537	330	2637	157
Montenegro	16100	8	0	386	11996	0
Netherlands	49200	2	584	190	8180	368
Norway	68400	18	2535	816	18025	303
Poland	26500	3	424	514	10685	104
Portugal	27800	6	143	284	7658	19
Romania	20800	2	285	520	3886	80
Serbia	13700	4	0	531	6165	82
Slovakia	29700	6	1321	666	10077	32
Slovenia	31000	8	428	620	19656	0
Spain	34800	3	302	334	14190	21
Sweden	47900	24	166	1216	59129	209
Switzerland	58600	8	234	696	8799	159
Ukraine	7500	4	1026	489	3819	38
United Kingdom	41200	7	621	263	6154	50
Algeria	1450	4	750	100	2874	0
Anglo	7300	9	77	145	2621	66
Benin	2100	1	0	42	1531	14
Botswana	16400	34	0	407	8208	0
Burkina Faso	1700	1	0	33	807	0
Burundi	800	1	0	0	1147	0
Cameroon	3100	1	51	42	2163	0
Central African Republic	600	7	0	0	3761	519
Chad	2600	5	50	0	3439	0
the Democratic Republic of Congo	800	2	11	50	1934	189
the Republic of Congo	6700	6	256	107	3575	236
Cote D'Ivoire	3300	1	230	28	3520	42
Diibouti	3200	16	0	121	3700	
Fovnt	11800	10	178	57	1553	40
ъзурі	11000	1	1/0	57	1555	40

Table 3-3. 6 Indicators of 148 countries from GDP per capita to WPMP

Equatorial Guinea	31800	9	266	0	3888	0
Eritrea	1300	2	0	47	614	0
Ethiopia	1800	1	0	7	1110	0
Gabon	18600	26	1436	381	5377	938
Gambia,	1600	1	0	0	1901	198
Ghana	4300	0	29	36	4160	49
Guinea	1200	1	0	53	3765	110
Guinea-Bissau	1500	5	0	0	2002	0
Kenya	3200	4	20	73	3503	0
Lesotho	3000	12	0	0	3050	0
Liberia	900	7	1	102	2526	0
Libya	14600	23	1814	0	15600	0
Madagascar	1500	3	0	35	1574	25
Malawi	1100	2	0	43	860	39
Mali	2200	1	0	35	0	106
Mauritania	4400	8	0	202	2955	0
Morocco	8200	2	0	62	1752	0
Mozambique	1200	4	49	189	1199	18
Namibia	11400	51	0	1188	19951	0
Niger	1100	2	0	0	1050	17
Nigeria	6100	0	46	21	1064	47
Rwanda	1800	1	0	0	371	0
Senegal	2500	1	4	65	1073	72
Sierra Lion	1600	1	0	0	1922	136
Somalia	400	6	0	0	2082	0
South Africa	13200	11	72	391	13917	0
South Sudan	2000	7	0	21	581	0
Swaziland	8500	10	0	210	2503	0
Tanzania	2900	3	24	89	1694	0
Togo	1500	1	0	75	1543	7
Tunisia	11400	3	454	197	1759	0
Uganda	2000	1	0	34	539	0
Western Sahara	2500	11	0	0	0	0
Zambia	3900	6	51	207	2685	149
Zimbabwe	2100	14	0	241	6836	0

Table 3-4. 6 Indicators of 148 countries from GDP per capita to WPMP

The Procedures of PCA

For the chosen 6 indicators, there is a possibility that they are correlated to some extent. In order to remove this kind of overlapping information in different indicators, the Factoring Component Analysis (FCA) is introduced into this article, especially its Principal Component Analysis (PCA) and all the analysis is finished by the software SPSS 19.

Check the Correlation Matrix

$$R = (r_{ij})_{m \times m} \tag{1}$$

 r_{ii} among the matrix is the correlated coefficient between x_j and x_j .

Firstly, to test whether or not it is necessary to use the principal component analysis of SPSS, the correlational matrix of the six indicators should be presented in table 4:

		GDP PC(ppp)	Apmp	PPMP	Rpmp	Ropmp	WPMP
Cor	GDP	1.000	.057	.140	.035	.252	.037
rela	PC(ppp)						
tion	Apmp	.057	1.000	.826	.851	.774	.767
	PPMP	.140	.826	1.000	.965	.793	.779
	Rpmp	.035	.851	.965	1.000	.815	.796
	Ropmp	.252	.774	.793	.815	1.000	.733
	WPMP	.037	.767	.779	.796	.733	1.000

Table 4. Correlation Matrix

Apparently, there are some correlational relations between each other .As a result , the principal component analysis can play a role in removing repeatedly redundant information from data so as to simplify data analysis.

KMO and Bartlett's Test

Whether partial correlations among variables are small is known by the Kaiser-Meyer-Olkin measure of sampling adequacy tests. And Bartlett's test of sphericity tests whether the correlation matrix is an identity one, which indicates the factor model is inappropriate. KMO must be greater than 0.5, and the range 0.8-0.9 is very appropriate for factor analysis. And the Bartlett's test of sphericity is significant. That means that its associated probability is less than 0.05.

With the help of SPSS 19.0, we get KMO and Bartlett's Test of the matrix in table 5: KMO =0.8, and Bartlett's Test is significant, its probability is less than 0.005. So it means our data matrix is suitable for PCA analysis.

Kaiser-Meyer-Olkin Measure	.800	
Bartlett's Test of Sphericity Approx. Chi-Square		948.743
	Df.	15
	Sig.	.000

Table 5. KMO and Bartlett's Test

The table 6: communities, shows extraction information rates of the variable of source data (extraction method: principal component analysis), and these rates are very high except the information extraction of x1, which also tests the principal component analysis is right.

The first variance contribution rate is high than 71%, furthermore its initial eigenvalue 4.26 is greater than 1 as is shown in table 7. On the other hand, eigenvalue is no less than 1 is one important principle of determining component, and that is because the chosen principal component, while its eigenvalue is less than 1, is not

better than the original variable in explaining the information of the original data. Our source data satisfy the two criteria of choosing components.

	Initial	Extraction		
GDP PC(ppp)	1.000	.990		
Apmp	1.000	.843		
PPMP	1.000	.903		
Rpmp	1.000	.934		
Ropmp	1.000	.831		
WPMP	1.000	.787		
Extraction Method: Principal Component Analysis				

Table	6.	Communities
-------	----	-------------

	Initial Eigenvalues			Extraction Sums of Squared Loadir		
			Cumulative			Cumulative
Component	Total	% of Variance	%	Total	% of Variance	%
1	4.260	71.006	71.006	4.260	71.006	71.006
2	1.027	17.120	88.127	1.027	17.120	88.127
3	.269	4.476	92.602			
4	.222	3.702	96.304			
5	.196	3.264	99.568			
6	.026	.432	100.000			

Table 7. T	Fotal Variance	e Explained
------------	----------------	-------------

Figure. 1. Scree Plot

According to the scree plot in Figure.1, there are not only apparent differences among the first two principal components and other components, but their eigenvalues are more than 1, conversely eigenvalues of the left components are greatly less than 1, which do not satisfy the requirement of choosing principal component. As a result, the first two components are chosen as principal components.

Principal Components

According to the component score coefficient matrix in table 8, the computable formula can be gotten:

$$Factor 2 = 0.957x1 - 0.063x2 + 0.018x3 - 0.083x4 + 0.177x5 - 0.088x6$$
(3)

	Component			
	1	2		
GDP PC(ppp)	062	.957		
Apmp	.222	063		
PPMP	.222	.018		
Rpmp	.235	083		
Ropmp	.194	.177		
WPMP	.216	088		
Extraction Method: Principal Component Analysis.				
Rotation Method: Varimax with Kaiser Normalization.				
Component Scores.				

Table 8.	Component	Score	Coefficient	Matrix
----------	-----------	-------	-------------	--------

Calculate the Z-score of Each Case

Thus, scores of every case mating with each country can be computed with the formula: z-score=71.006% Fator1+17.12% Factor2. After getting all 148 countries' z-scores, rank all countries and then visualize and rank them in a radar chart in Figure.2.

Figure.2 .Radar chart based on factor Scores of countries and their Rankings

World Comparison

The countries of the highest z-scores are respectively Bulgaria(8.09), Finland(1.27), Iceland(1.01), United States(0.74), Suriname(0.73), Sweden(0.66), Australia(0.59) and Canada(0.55). Conversely, 20 countries of the smallest z-scores include Mali, Senegal, Tanzania, Guinea-Bissau, Madagascar, Mozambique, Somalia, South Sudan, Western Sahara, Benin, Malawi, Niger, Togo, Bangladesh, Nepal, Burkina Faso, Burundi, Eritrea, Ethiopia, Uganda and Rwanda, whose z-scores range from -0.31to -0.34,

Rwanda's is the lowest of all the countries. The similar characteristics 20 countries share is that all of them are the poorest nations and their transportation indicators a million people are very small at the same time. China's ranking is 87th with the –score of -0.21, much lower than all developed countries whose scores are not less than -0.11(Israel gets the lowest score in them). Malaysia, whose ranking is 57th (-0.05) ranks ahead among all developing countries, even higher than several developed entities. On the whole, the real level of China's infrastructure development is in the middle class at most.

Conclusion

Although china has made much progress in transportation compared to its past since 1978, there is still a big gap between it and developed countries (even many developing ones). At present, it should keep attaching the importance to its transportation and upgrade infrastructure and increase the density per unit square kilometer or per person. In future, China's focus should still be on increasing the quantities and quality of transportation infrastructure and improving its people's living standard at the same time.

Acknowledgments

The research is part of a general project of Guangdong Philosophy and Social Sciences "the Twelfth- Five-year" Planning (GD11CGL01) and Doctor Startup Project of Huizhou University (C511.0118), which is granted by the relevant organizations in charge of them.

References

[1] H.Y. Cheng, D.Q. Li. Clustering Analysis of Chinese Water Transport Based on Importance Values. The proceedings of the 2009 International Conference on Information Management, Innovation Management and Industrial Engineering 4:43-46 (2009).

[2] CIA. <u>https://www.cia.gov/library/publications/resources/the-world-factbook/</u>

[3] National Bureau of Statistics of China. <u>http://data.stats.gov.cn/easyquery.htm?</u> <u>cn=C01</u>