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Abstract. We provide a unification-based resolution method for basic modal logics. Because we 
use a clausal normal form that is quite similar to that in first-order logic, our method has good 
prospects for importing proof strategies for resolution methods from first-order logic. Furthermore, 
we show a solution for obtaining a resolution method for the modal logic KM, the frames of which 
are first-order and undefinable. It is impossible to make a unification rule for the modal logics of 
first-order undefinable frames in a similar way to that of basic modal logics. In this paper, we use a 
clausal rewriting rule for KM in addition to modal unification. We expect that this kind of 
adaptation can be applied to the construction of unification-based proof methods for other modal 
logics with first-order undefinable frames. 

Introduction 
Modal logics are used widely in various research fields, such as artificial intelligence (AI) and 

software verification. For example, in AI, the modal logics KT5 and KD45, called epistemic logics, 
are used for knowledge representation. In software verification, temporal logics such as LTL [1], 
CTL [2], and quantitative extension of LTL [3,4], which are extensions of the modal logics K4, 
KD4, and KT4, are used as specification languages for desirable properties of systems. Furthermore, 
the modal logics KT5 and KD45 are used in security protocol analysis [5–8]. In these fields, proof 
methods for modal logics play important roles in knowledge inference, software verification, and 
security analysis. Efficient proof methods are desirable in these fields. 

In this paper, we define a resolution method for modal logic KM, a logic in which frames are 
first-order undefinable. Because the axiom M represents a time sequence model that will reach final 
states, this method can be used to prove dead lock-free systems. 

First, we construct a resolution method for the basic modal logics frames that are restricted to 
first-order definable frames. Among various methods of proving modal formulae [9–15], 
unification-based proof methods [16,17] are efficient and have the ability to be adapted to various 
modal logics, because modal unification [18] absorbs differences in the modal logics. In previously 
reported proof methods for temporal logics [11,15], a clausal normal form was used; however, it did 
not reduce disjunction inside □ and conjunction inside ♢. In this paper, we introduce another type 
of clausal normal form. In it, each literal has a sequence of labeled modal operators as a prefix, and 
the labels correspond to Skolem function symbols in the first-order language used in specifying the 
semantics of modal logics. A clause is a disjunction of such prefixed literals. Our resolution method 
is a good prospect for introducing proof strategies for resolution methods for first-order logic, 
because our clausal normal form is similar to that used in the resolution method of first-order logic. 
Furthermore, it is easy to understand the flow of proof in our resolution method, because we do not 
have to reduce disjunction inside □ and conjunction inside ♢ in the middle of the proof, and the 
proof applies resolution rules alone. 

Next, we extend this resolution method to deal with the modal logic KM. It is impossible to 
correspond labels with Skolem function symbols in the first-order language, because frame 
restriction is not first-order undefinable. To accommodate this, we use a rewriting rule based on 
axiom M in addition to modal unification. 
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Basic Modal Logics 
There are various basic modal logics, as follows (see [19,20]): 

• K, KD, KT, K4, KB, K5, KT4 (S4), KD4, KB4, KTB, KDB, K45, KT5 (S5), KD5, KD45.  
In this section, we introduce the basic modal logics from [20]. Each has its own semantics. We 

introduce a common syntax and semantics for modal logics. 
Syntax:  Formulae in modal logics are defined inductively, as follows: 

• Atomic propositions are formulae. 
• 𝑓𝑓 ∧ 𝑔𝑔, 𝑓𝑓 ∨ 𝑔𝑔, ¬𝑓𝑓, □𝑓𝑓, ♢𝑓𝑓, ⊥ are formulae, if 𝑓𝑓 and 𝑔𝑔 are formulae. 

∧, ∨, and ¬ are the usual operators of ‘classic’ logic. ⊥ is an atomic proposition representing 
falsity. □ and ♢ are modal operators, known as the necessity operator and the possibility operator, 
respectively. The modal logics K, KD, and KT are alethic logics. In these logics, □𝑓𝑓 and ♢𝑓𝑓 
represent 𝑓𝑓 necessarily holds and 𝑓𝑓 possibly holds, respectively. The modal logics K4, KD4, and 
KT4 are bases of temporal logics. In these logics, □𝑓𝑓 and ♢𝑓𝑓 represent 𝑓𝑓 always holds and 𝑓𝑓 
eventually holds, respectively. The modal logics KT5 and KD45 are epistemic logics. In these 
logics, □𝑓𝑓 and ♢𝑓𝑓 represent the statement that 𝑓𝑓 holds is known and the statement that 𝑓𝑓 does 
not hold is unknown, respectively. 

Semantics:  We give an interpretation to a formula, to define the semantics for the basic modal 
logics. A frame is a tuple 〈𝑊𝑊,𝑅𝑅〉 and a model is a triple 〈𝑊𝑊,𝑅𝑅,𝑉𝑉〉, where 𝑊𝑊 is a set of worlds, 𝑅𝑅 
is a binary relation on 𝑊𝑊 (sometimes called a reachability relation), and 𝑉𝑉 is an assignment that 
gives a set of worlds to a proposition symbol. 
Formulae are interpreted by models. 𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓 denotes that a formula 𝑓𝑓 is true at a world 𝑤𝑤 ∈ 𝑊𝑊 
in a model 𝑀𝑀 = 〈𝑊𝑊,𝑅𝑅,𝑉𝑉〉. The truth condition is defined as follows: 

𝑀𝑀,𝑤𝑤 ⊨ 𝑝𝑝 ⇔  𝑤𝑤 ∈ 𝑉𝑉(𝑝𝑝) 
𝑀𝑀,𝑤𝑤 ⊨⊥ ⇔ ⊥ 

𝑀𝑀,𝑤𝑤 ⊨ ¬𝑓𝑓 ⇔  ¬(𝑀𝑀,𝑤𝑤 ⊨ ¬𝑓𝑓) 
𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓 ∧ 𝑔𝑔 ⇔ (𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓) ∧ (𝑀𝑀,𝑤𝑤 ⊨ 𝑔𝑔) 
𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓 ∨ 𝑔𝑔 ⇔ (𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓) ∨ (𝑀𝑀,𝑤𝑤 ⊨ 𝑔𝑔) 
𝑀𝑀,𝑤𝑤 ⊨ □𝑓𝑓 ⇔ ∀𝑤𝑤′ ∈ 𝑊𝑊(𝑤𝑤𝑅𝑅𝑤𝑤′ → 𝑀𝑀,𝑤𝑤′ ⊨ 𝑓𝑓) 
𝑀𝑀,𝑤𝑤 ⊨ ♢𝑓𝑓 ⇔ ∃𝑤𝑤′ ∈ 𝑊𝑊(𝑤𝑤𝑅𝑅𝑤𝑤′ ∧ 𝑀𝑀,𝑤𝑤′ ⊨ 𝑓𝑓) 

The basic modal logics are classified by their own frame conditions. The frame conditions for the 
basic modal logic KS1 … Sn is a conjunction of the conditions corresponding to S1, …, Sn, as listed 
in Table 1. For example, the frame conditions for KD4 are seriality and transitivity, and the frame 
conditions for KT5 are reflexivity and Euclidean property. If a frame 〈𝑊𝑊,𝑅𝑅〉 satisfies conditions of 
the modal logic KS1 … Sn, we say 〈𝑊𝑊,𝑅𝑅〉 is a KS1 … Sn-frame, and 〈𝑊𝑊,𝑅𝑅,𝑉𝑉〉 is a KS1 … 
Sn-model. 

A formula 𝑓𝑓 is valid (unsatisfiable) in the class of KS1 … Sn-frames if for every KS1 … 
Sn-model 𝑀𝑀 = 〈𝑊𝑊,𝑅𝑅,𝑉𝑉〉 and for every world 𝑤𝑤 ∈ 𝑊𝑊, 𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓 (¬(𝑀𝑀,𝑤𝑤 ⊨ 𝑓𝑓)). A formula 𝑓𝑓 is 
valid (with respect to being satisfiable, unsatisfiable) in the modal logic KS1 … Sn, if 𝑓𝑓 is valid 
(with respect to being satisfiable, unsatisfiable) in the class of KS1 … Sn-frames. 

Table 1. Axioms and conditions of reachability relations 
Axioms Conditions  

D Serial ∀𝑥𝑥∃𝑦𝑦 𝑥𝑥𝑅𝑅𝑦𝑦 
T Reflexive ∀𝑥𝑥 𝑥𝑥𝑅𝑅𝑥𝑥 
4 Transitive ∀𝑥𝑥𝑦𝑦𝑥𝑥(𝑥𝑥𝑅𝑅𝑦𝑦 ∧ 𝑦𝑦𝑅𝑅𝑥𝑥 → 𝑥𝑥𝑅𝑅𝑥𝑥) 
B Symmetric ∀𝑥𝑥𝑦𝑦(𝑥𝑥𝑅𝑅𝑦𝑦 → 𝑦𝑦𝑅𝑅𝑥𝑥) 
5 Euclidean  ∀𝑥𝑥𝑦𝑦𝑥𝑥(𝑥𝑥𝑅𝑅𝑦𝑦 ∧ 𝑥𝑥𝑅𝑅𝑥𝑥 → 𝑦𝑦𝑅𝑅𝑥𝑥) 
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Clausal Normal Form 
In our resolution method, formulae are converted into a clausal normal form, which we introduce 

in this section. In our clausal normal form, each literal has a sequence of labeled modal operators as 
a prefix, and the clause is a disjunction of such prefixed literals. 

We assume that all ¬ operators in a formula in the modal logic occur in front of proposition 
symbols. This restriction maintains generality. 

We consider the first-order language 𝔏𝔏. In 𝔏𝔏, we have predicate 𝑃𝑃(𝑤𝑤), which has the same 
truth value as 𝑤𝑤 ∈ 𝑉𝑉(𝑝𝑝) for each proposition 𝑝𝑝 in the basic modal logic. For each formula 𝑓𝑓 in 
the basic modal logic, we can consider the equivalent formula 𝔏𝔏(𝑓𝑓) in 𝔏𝔏. That is, 

𝑓𝑓 is unsatisfiable in the class of KS1…Sn-frames  iff 
‘𝔏𝔏(𝑓𝑓) ∧ the frame conditions for KS1…Sn’ is unsatisfiable in the first-order logic. 

Here, we label each occurrence of □  and ♢ in a formula with a Skolem function symbol, 
which occurs in the Skolemized formula of 𝔏𝔏(𝑓𝑓) ∧ the frame conditions for KS1 … Sn. 

Example 1  Let 𝑓𝑓 be □♢♢𝑝𝑝. Then, 𝔏𝔏(𝑓𝑓) is 

∀𝑥𝑥(𝑤𝑤𝑅𝑅𝑥𝑥 → ∃𝑦𝑦 �𝑥𝑥𝑅𝑅𝑦𝑦 ∧ ∃𝑥𝑥�𝑦𝑦𝑅𝑅𝑥𝑥 ∧ 𝑃𝑃(𝑥𝑥)��) 

Hence, the Skolemized formula of 𝔏𝔏(𝑓𝑓) is 

𝑤𝑤𝑅𝑅𝑥𝑥 → (𝑥𝑥𝑅𝑅𝑥𝑥(𝑥𝑥) ∧ �𝑥𝑥(𝑥𝑥)𝑅𝑅𝑅𝑅(𝑥𝑥) ∧ 𝑃𝑃�𝑅𝑅(𝑥𝑥)��) 

Thus, the labeled formula of 𝑓𝑓 is 

□𝑥𝑥♢𝑎𝑎♢𝑏𝑏𝑝𝑝. 

Now, we consider the correspondence between a labeled formula 𝑓𝑓∗  and the Skolemized 
formula in 𝔏𝔏. For ♢𝑎𝑎(𝑝𝑝 ∧ 𝑞𝑞), the Skolemized formula is 𝑤𝑤𝑅𝑅𝑥𝑥(𝑤𝑤) ∧ 𝑃𝑃(𝑥𝑥(𝑤𝑤)) ∧ 𝑄𝑄(𝑥𝑥(𝑤𝑤)). For 
♢𝑎𝑎𝑝𝑝 ∧ ♢𝑎𝑎𝑞𝑞 , the Skolemized formula is 𝑤𝑤𝑅𝑅𝑥𝑥(𝑤𝑤) ∧ 𝑃𝑃(𝑥𝑥(𝑤𝑤)) ∧ 𝑤𝑤𝑅𝑅𝑥𝑥(𝑤𝑤) ∧ 𝑄𝑄(𝑥𝑥(𝑤𝑤)) . That is, 
♢𝑎𝑎(𝑝𝑝 ∧ 𝑞𝑞) has the equivalent satisfiability of ♢𝑎𝑎𝑝𝑝 ∧ ♢𝑎𝑎𝑞𝑞. Similarly, for □𝑥𝑥(𝑝𝑝 ∨ 𝑞𝑞), the Skolemized 
formula is 𝑤𝑤𝑅𝑅𝑥𝑥 → (𝑃𝑃(𝑥𝑥) ∨ 𝑄𝑄(𝑥𝑥)). For □𝑥𝑥𝑝𝑝 ∨ □𝑥𝑥𝑞𝑞, the Skolemized formula is (𝑤𝑤𝑅𝑅𝑥𝑥 → 𝑃𝑃(𝑥𝑥)) ∨
(𝑤𝑤𝑅𝑅𝑥𝑥 → 𝑄𝑄(𝑥𝑥)). Thus, □𝑥𝑥(𝑝𝑝 ∨ 𝑞𝑞) has the equivalent satisfiability of □𝑥𝑥𝑝𝑝 ∨ □𝑥𝑥𝑞𝑞. These results 
mean that in addition to the usual distribution rules □(𝑓𝑓 ∧ 𝑔𝑔)  ⇒ □𝑓𝑓 ∧ □𝑔𝑔 and ♢(𝑓𝑓 ∨ 𝑔𝑔) ⇒ ♢𝑓𝑓 ∨
♢𝑔𝑔, we can use the following distribution rules due to the labeling.  

□𝑥𝑥(𝑓𝑓 ∨ 𝑔𝑔) ⇒ □𝑥𝑥𝑓𝑓 ∨ □𝑥𝑥𝑔𝑔 
♢𝑎𝑎(𝑓𝑓 ∧ 𝑔𝑔) ⇒ ♢𝑎𝑎𝑓𝑓 ∧ ♢𝑎𝑎𝑔𝑔 

Using these rules, we can translate a formula 𝑓𝑓 into clausal normal form 𝑓𝑓𝑐𝑐, where each literal has 
a sequence of labeled modal operators as a prefix, and the clause is a disjunction of such prefixed 
literals. 

Example 2  Let 𝑓𝑓 be as follows. 

𝑓𝑓:   ♢𝑝𝑝 ∧ □(¬𝑝𝑝 ∨ ♢𝑞𝑞) ∧ □¬𝑞𝑞 
The labeled formula 𝑓𝑓∗ and the clausal normal form 𝑓𝑓𝑐𝑐 are as follows: 

𝑓𝑓∗:   ♢𝑎𝑎𝑝𝑝 ∧ □𝑥𝑥(¬𝑝𝑝 ∨ ♢𝑏𝑏𝑞𝑞) ∧ □𝑦𝑦¬𝑞𝑞 

𝑓𝑓𝑐𝑐:   ♢𝑎𝑎𝑝𝑝 ∧ (□𝑥𝑥¬𝑝𝑝 ∨ □𝑥𝑥♢𝑏𝑏𝑞𝑞) ∧ □𝑦𝑦¬𝑞𝑞 
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Unification-based Resolution Method for Basic Modal Logics 
In this section, we introduce a unification-based resolution method for the basic modal logics. 

The resolution method is a refutation system. First, we transform a formula 𝑓𝑓 to 𝑓𝑓𝑐𝑐. Then, we 
apply the following resolution rules to 𝑓𝑓𝑐𝑐. We say 𝑓𝑓 or 𝑓𝑓𝑐𝑐 is refutable if the empty clause ⊥ is 
derived from 𝑓𝑓𝑐𝑐. 

rule1 𝛼𝛼𝛼𝛼∨𝛤𝛤    𝛽𝛽𝛼𝛼�∨𝛤𝛤′

(𝛼𝛼⊥∨𝛤𝛤∨𝛤𝛤′)𝜎𝜎(𝛼𝛼,𝛽𝛽)
   

rule2 𝛼𝛼𝛼𝛼𝛼𝛼∨𝛤𝛤    𝛽𝛽𝛽𝛽𝛼𝛼′∨𝛤𝛤′

(𝛼𝛼𝛼𝛼𝛼𝛼∨𝛤𝛤∨𝛤𝛤′)𝜎𝜎(𝛼𝛼,𝛽𝛽)
   

rule3 𝛼𝛼⊥∨𝛤𝛤
𝛤𝛤

  (if there is no □ in 𝛼𝛼) 

where 𝐿𝐿 , 𝐿𝐿′  and 𝐿𝐿�  are literals; 𝐿𝐿  and 𝐿𝐿�  are complementary literals; 𝛼𝛼 , 𝛽𝛽 , 𝛾𝛾  and 𝛿𝛿  are 
sequences of modal operators associated with labels; 𝜎𝜎(𝛼𝛼,𝛽𝛽) is a substitution that unifies 𝛼𝛼 and 
𝛽𝛽 ; and (𝛼𝛼 ⊥∨ 𝛤𝛤 ∨ 𝛤𝛤′)𝜎𝜎(𝛼𝛼,𝛽𝛽)  and (𝛼𝛼𝛾𝛾𝐿𝐿 ∨ 𝛤𝛤 ∨ 𝛤𝛤′)𝜎𝜎(𝛼𝛼,𝛽𝛽)  are the formulae obtained by replacing 
modal operators in (𝛼𝛼 ⊥∨ 𝛤𝛤 ∨ 𝛤𝛤′) and (𝛼𝛼𝛾𝛾𝐿𝐿 ∨ 𝛤𝛤 ∨ 𝛤𝛤′) with the substitution 𝜎𝜎(𝛼𝛼,𝛽𝛽), respectively. 
For the modal logic KS1…Sn, each substitution should consist of the assignments corresponding to 
K, S1, ..., Sn, as listed in Table 2. For example, in unification in KT4, assignments of the form 
{□, ♢}/□, ∅/□, {□, ♢}+/□ are allowed. ♢𝑓𝑓 is a special constant-labeled modal operator ♢. The 
symbol + represents transitive closure. If the same variable-labels appear in different clauses, they 
are managed as different variable labels. Resolution rules 1 and 3 are usual rules. Rule 2 is used for 
replacing 𝛼𝛼 with 𝜎𝜎(𝛼𝛼,𝛽𝛽). 

Table 2. Assignments for modal logics 
Axioms Type of assignments 

K {□, ♢}/□ 
D ♢𝑓𝑓/□ 
T ∅/□ 
4 {□, ♢}+/□ 
B ∅/♢□ 
5 {□, ♢}+/{□, ♢}+□ 

Theorem 1  If a labeled formula 𝑓𝑓𝑐𝑐 is refutable by the resolution method for the modal logic 
KS1…Sn, 𝑓𝑓 is unsatisfiable in the modal logic KS1…Sn. 

Example 3  A refutation of the following formula 𝑓𝑓 in K4 is as follows: 

𝑓𝑓:   ♢𝑝𝑝 ∧ □(¬𝑝𝑝 ∨ ♢𝑞𝑞) ∧ □¬𝑞𝑞 
As shown in Example 2, the clausal normal form 𝑓𝑓𝑐𝑐 is as follows: 

𝑓𝑓𝑐𝑐:   ♢𝑎𝑎𝑝𝑝 ∧ (□𝑥𝑥¬𝑝𝑝 ∨ □𝑥𝑥♢𝑏𝑏𝑞𝑞) ∧ □𝑦𝑦¬𝑞𝑞 

Figure 1 shows a refutation of 𝑓𝑓𝑐𝑐. This means, ♢𝑝𝑝 ∧ □(¬𝑝𝑝 ∨ ♢𝑞𝑞) ∧ □¬𝑞𝑞 is unsatisfiable in the 
modal logic K4. 

 
Figure 1. A refutation of ♢𝑝𝑝 ∧ □(¬𝑝𝑝 ∨ ♢𝑞𝑞) ∧ □¬𝑞𝑞. 
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Unification-based resolution method for KM 
In this section, we describe a solution for obtaining a resolution method for the modal logic KM, 

the frames of which are first-order and undefinable. 
The axiomatic system of KM is the system obtained by adding the McKinsey axiom M: □♢𝐴𝐴 → 

♢□𝐴𝐴 to the axiomatic system for K. The frame condition for KM is not first-order definable [21]. 
Thus, it is impossible to define a unification-based resolution method for KM in a similar way as 
that for basic modal logics. We expect a pattern of unification from axiom M. 

Because the negation of axiom M is □♢𝑝𝑝 ∧ □♢¬𝑝𝑝 , a candidate for assignment may be 
□𝑥𝑥♢𝑎𝑎/□𝑦𝑦♢𝑏𝑏.  However, because the frame condition for KM is not clarified, it is difficult to justify 
the candidate □𝑥𝑥♢𝑎𝑎/□𝑦𝑦♢𝑏𝑏. Hence, we adopt the addition of new clauses using rewriting, in addition 
to adaptation by unification. Axiom M: □♢𝐴𝐴 → ♢□𝐴𝐴 can be considered the clause rewriting rule 
□♢𝐴𝐴 ⇒ ♢□𝐴𝐴. For □𝑥𝑥♢𝑎𝑎𝑝𝑝 ∧ □𝑦𝑦♢𝑏𝑏¬𝑝𝑝, we add the new clauses ♢𝑎𝑎′□𝑥𝑥′𝑝𝑝 and ♢𝑏𝑏′□𝑦𝑦′¬𝑝𝑝. This makes 
refutation possible by the unification ♢𝑎𝑎′□𝑥𝑥′𝑝𝑝  and □𝑦𝑦♢𝑏𝑏¬𝑝𝑝  using the assignment {♢𝑎𝑎′/□𝑦𝑦  , 
♢𝑏𝑏/□𝑥𝑥′}. 

Related works 
Resolution methods using a translation from a modal formula to a formula of clausal normal 

form of predicate logic were proposed in [13] and [14]. They are advantageous in making full use of 
proof strategies with resolution methods of predicate logic. They can adapt to modal logics with 
first-order definable frames. However, they cannot deal with KM, because their frame conditions 
are not first-order definable. 

Proof methods for modal logics with first-order undefinable frames were suggested in [22] and 
[23]. The method proposed in [22] uses a combination of Hilbert-style reasoning and semantic 
reasoning. Our approach is similar for adaptation to KM. However, the method proposed in [23] 
uses translation from a modal formula into a formula of set theory. For adapting to KM, it would be 
necessary to translate the frame condition for KM into a formula in set theory. 

Conclusions 
We described unification-based resolution methods for basic modal logics. Because our clausal 

normal form is quite similar to that in first-order logic, we can import proof strategies that have 
been studied extensively in proof methods in first-order logic. We discussed a solution for obtaining 
a resolution method for the modal logic KM, the frames of which are first-order and undefinable. 
There are several axioms, such as N1, that characterize first-order undefinable frames. We expect 
that this kind of adaptation to KM can be applied to the construction of unification-based proof 
methods for other modal logics with first-order undefinable frames. 

In addition, future research will include more practical applications of unification and rewriting 
in the proof method of the modal logic. We have proposed a practical application of a proof method 
for LTL, which is considered an extension of modal logic, in security analyses [24,25], 
bioinformatics [26–28], system verification [29–33], and system synthesis [34,35]. We will adapt 
modal unification and rewriting to these applications. 
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