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Abstract. In this paper, we make a research on a widely-used SAT solver, Minisat, aiming to 
improve its performance using coarse-grained parallel method on multi-core and multi-platform. 
Firstly, we parallel the Minisat by mean of OpenMP and test its performance with different threads 
by running a test set consisting of 2000 SAT problems on an X86 computer. Besides, a scheduling 
strategy with time sequence is added to the process and achieves a better speed-up ratio. Then, we 
move the algorithm to an ARM computer and repeat the same process, finding that the performance 
of Minisat on X86 is better than that on ARM, but ARM platform has a better scale effect than X86 
platform when running at full load and is able to perform better than X86 when they have the same 
hardware configuration. 

Introduction 
As the first proved NP-complete problem [1], satisfiability problem (SAT problem for short) has 

an important theoretical and application value in mathematical logic, computer science, IC design 
and verification, artificial intelligence, etc. It is the core problem of computer theory and application. 
The design and implement of efficient algorithms to solve this problem is of great significance. 
However, there doesn't exist such an algorithm whose computational complexity in the worst case 
can reach polynomial level, thus the solving speed is a big problem restricting the development of 
the SAT algorithms. 

As one of the most popular SAT solvers, Minisat [2] is based on DPLL [3] algorithm, which is a 
kind of classic SAT complete algorithms. Minisat is added into some techniques like confliction 
clause learning and watched literal, achieving a good performance. Nowadays, there are many 
parallel algorithms of SAT, such as GrADSAT [4], NAGSAT [5], Satz [6] and PSATO [7]. There 
also exist parallel algorithms of Minisat like PMSat [8]. But most of them are faced to clusters and 
grids consisting of multiple computers, which means these algorithms are not fittable to reach an 
ideal performance on one computer. Our paper tries to improve Minisat performance on one 
computer by applying coarse-grained parallel technique and proper dynamic scheduling strategy. 

Nowadays, most of the SAT studies are based on X86 platforms, but there is another efficient 
platform. The ARM architecture is a 32-bit reduced instruction set (RISC) processor architecture 
with high performance, low cost and low energy consumption. It is widely used in consumer 
electronics, industrial control, communication system, network system and military industrial 
project. However, there are few researches about Minisat on this platform. In our paper, we apply 
the Minisat coarse-grained parallel algorithm to ARM platform, and compare its performance with 
that on X86 platform, so that we can know if ARM platform is more suitable to solve SAT problems 
than X86 platform, which is of great significance to a deep study on SAT. 

Methodology 
Minisat is a kind of complete SAT solver, it can theoretically solve all SAT problems. 

Comparing with the incomplete solver, its structure is more complex and the solving process is 
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more complicated. Figure 1 shows the main steps of Minisat solver solving a SAT problem. From 
Figure 1 we can find that steps of Minisat including variable decision, propogation, conflict 
judgment, conflict analysis, clause learning, are associated tightly. These steps share a clear order. 
The latter step needs the data produced by the former steps, which means the algorithm exists 
strong data dependence and not suitable for being dealt with the fine-grained parallel technique. If 
we seperate the solving process of one SAT case into several jobs and put them on different threads 
to complete, chances are that communication cost among threads will occupy plenty of computing 
resources, reducing the solution efficiency of the algorithm. Therefore, we carry on the 
coarse-grained parallel technique, that is, we start multiple threads at the same time while each 
thread at a time dealing with one SAT problem, every thread will not accept a new case until it 
succeed solving the present one. Considering the fact that most SAT cases require memory of 
several KB to several MB in the process of being solved, which is far less than the available 
memory of general computers. Therefore, in this paper, we ignored the memory size restrictions on 
Minisat. At the same time, in order to avoid the overhead costs of sharing thread parameters and to 
trade space for time, we define independent data structures and allocate independent memory space 
for each thread when starting multiple threads. So the threads are independent of each other and 
share no data exchange.  
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Fig.1. Flow chart of Minisat 
As for scheduling strategy, we adopt dynamic scheduling so as to balance the load among 

threads. This kind of scheduling method dynamically allocates the input SAT cases to threads 
according to the solving condition of each thread while program is running. What's more, we also 
apply asynchronous scheduling strategy to make full use of computational resource, that is, each 
thread will immediatelly deal with the next allocated SAT case rather than wait for other threads. 
Figure 2 shows the coarse-grained parallel method of Minisat when the solver deals with a set of 
input SAT problems. 

Using this scheduling method, we imagine that one thread is assigned to a set of SAT cases 
whose solving time in all is equal to that of any other threads, and all threads end at basically the 
same time, so that threads can run at full capacity in this period of time, making full use of the 
computing resources of the computer. But things are different when the solver runs in practice. We 
noticed that threads are not end as the way we imagined. Some threads are still working while 
others have already finished their jobs. 

After analysis, we realize that because the solving time of each input SAT problem varies and 
these SAT problems are sent into Minisat in an fixed order, such an circumstance will happen: 
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Thread A have completed the penultimate mission when the system assigns it an easy case. While 
Thread A is dealing with its last mission, Thread B completes its penultimate mission and system 
gives it a much more difficult case. So thread B will keep solving this case for a long period of time 
after Thread A stops, which leads to the different run time of two threads. This explanation is also 
effective when the number of threads is more than two. The time difference mentioned above can 
theoretically reach to as much as the solving time of the most difficult SAT problem among the 
input dataset. 
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Fig.2. Coarse-grained parallel method of Minisat 
We propose a new scheduling algorithm with time sequence in order to solve this problem. Basic 

idea of this algorithm is that the SAT datasat are ordered by time sequence from large to small 
according to their practical solving time before sent into Minisat solver, so that cases with a longer 
solving time will be scheduled prior to those with a shorter solving time. By doing so, each SAT 
case of thread assigned at last is an easy case, making it possilble to keep run time of each thread 
basicly equal. Diffrences between the ordinary dynamic scheduling and dynamic scheduling with 
time sequence are shown in figure 3. 
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Fig.3. Differences between two scheduling strategies 
In order to know a SAT problem's solving time before practically running so as to make the 

dynamic scheduling strategy with time sequence realizable, we borrow Frank Hutter's time 
prediction model [9] that is based on random forest. This model can predict the solving time of SAT 
problems according to their features, making it possible to arrange the input dataset in time 
sequence from big to small and meet the need of our new scheduling strategy. 
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Experimental Results and Analysis 
We do the experiment on both X86 and ARM platforms. Configuration information of the two 

platforms are shown in Table 1.  
Table 1. Configuration information of X86 and ARM platforms 

Platform X86 ARM 
CPU Model Intel Xeon E5-2650 FT-1500A 

Number of CPU 1 2 
Cores per CPU 16 8 

Hypert-threadings per Core 2 1 
Frequency 2.00GHz 1.5GHz 

Memory Size 64GB 32GB 
 

Table 2. Testset solving time with different threads on two platforms using two scheduling methods. 
Number of thread 1 2 4 8 16 32 64 128 

Dynamic 
Scheduling 

X86 4191.3 2444.9 1188.3 576.3 334.8 237.6 253.1 270.4 

ARM 8789.9 4481.7 2257.3 1212.4 700.6 725.1 751.9 770.7 
Dynamic 

Scheduling 
with Time 
Sequence 

X86 4191.3 2568.3 1230.3 581.6 310.1 218.7 257.0 312.3 

ARM 8789.9 4384.8 2219.8 1143.6 638.2 686.1 735.1 778.8 

The testdata consists 2000 SAT cases, each of them is able to be solved in less than 100 seconds. 
During the experiment, we test the two scheduling methods on both platforms. As for each 
scheduling method, we set different numbers of threads to solve the testdata. The program stops and 
we record the time used when all of the testset are successfully solved. It’s worth noticing that when 
we test the dynamic scheduling method with time sequence, the time spent on predicting solving 
time and sorting is not reckoned in. 

 
Fig.4. Speed-up ratio of different scheduling methods on different platforms (The horizontal axis 

represents number of thread while the vertical axis represents speed-up ratio. The green, blue, 
purple and red line respectively represents dynamic scheduling with time sequence on X86, 
dynamic scheduling on X86, dynamic scheduling with time sequence on ARM, dynamic scheduling 
on ARM).  

The experiment results are shown in Table 2. Figure 4 shows the speed-up ratio.  
After analysis of data from Table 2 and Figure 4, we can come to conclusions:  
1. Minisat perfoms best with 32 threads on X86 platform while with 16 threads on ARM 
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platform, which is in accordance with their own hardware configuration.  
2. Dynamic scheduling with time sequence perfoms better than ordinary dynamic scheduling on 

both platforms. The speed-up ratio increases from 17.64 to 19.16 on X86 and from 12.55 to 
13.77 on ARM platform, which is a pretty good perfoamance improvement.  

3. ARM platform has a better scale effect than X86 when running with full load. As we can see, 
Performance of one thread on X86 is about twice as fast as that on ARM, but X86’s 
performance when running with full load is just 3 times as fast as ARM’s. This number 
should be 6 because this X86 computer can support threads twice as many as ARM computer. 
So ARM computer obtains an extra speedup than X86 by parallelism. Therefore, it is 
probably that ARM will perform better than X86 if they have the same configuration.  

Conclusion 
In this paper, we adopt a dynamic scheduling strategy with time sequence into Minisat’s 

coarse-grained reseach and achieve a better speed-up ratio and performance than ordinary dynamic 
scheduling. What’s more, we complete the same test on ARM platform and find that even ARM’s 
overall performance when running Minisat is not as good as X86’s, it should perform better when 
increasing its cores, support threads and cpu performance to X86’s level. 
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