

A Research on Minisat Using Coarse-grained Parallel Technique Based
on Multi-core and Multi-platform

*Junjie Zhu1, a, Jingfei Jiang1, b, Xiaocheng Luo1, c, Yong Dou1, d

 1National Laboratory of Parallel and Distributed Processing, National University of Defence
Technology, Changsha, 410073, China

aemail: junjiepiglet@163.com, bemail:jingfeijiang@126.com
cemail: luoxiaocheng15@nudt.edu.cn, demail:yongdou@nudt.edu.cn

Keywords: Minisat solver; coarse-grained; multi-core; multi-platform

Abstract. In this paper, we make a research on a widely-used SAT solver, Minisat, aiming to
improve its performance using coarse-grained parallel method on multi-core and multi-platform.
Firstly, we parallel the Minisat by mean of OpenMP and test its performance with different threads
by running a test set consisting of 2000 SAT problems on an X86 computer. Besides, a scheduling
strategy with time sequence is added to the process and achieves a better speed-up ratio. Then, we
move the algorithm to an ARM computer and repeat the same process, finding that the performance
of Minisat on X86 is better than that on ARM, but ARM platform has a better scale effect than X86
platform when running at full load and is able to perform better than X86 when they have the same
hardware configuration.

Introduction
As the first proved NP-complete problem [1], satisfiability problem (SAT problem for short) has

an important theoretical and application value in mathematical logic, computer science, IC design
and verification, artificial intelligence, etc. It is the core problem of computer theory and application.
The design and implement of efficient algorithms to solve this problem is of great significance.
However, there doesn't exist such an algorithm whose computational complexity in the worst case
can reach polynomial level, thus the solving speed is a big problem restricting the development of
the SAT algorithms.

As one of the most popular SAT solvers, Minisat [2] is based on DPLL [3] algorithm, which is a
kind of classic SAT complete algorithms. Minisat is added into some techniques like confliction
clause learning and watched literal, achieving a good performance. Nowadays, there are many
parallel algorithms of SAT, such as GrADSAT [4], NAGSAT [5], Satz [6] and PSATO [7]. There
also exist parallel algorithms of Minisat like PMSat [8]. But most of them are faced to clusters and
grids consisting of multiple computers, which means these algorithms are not fittable to reach an
ideal performance on one computer. Our paper tries to improve Minisat performance on one
computer by applying coarse-grained parallel technique and proper dynamic scheduling strategy.

Nowadays, most of the SAT studies are based on X86 platforms, but there is another efficient
platform. The ARM architecture is a 32-bit reduced instruction set (RISC) processor architecture
with high performance, low cost and low energy consumption. It is widely used in consumer
electronics, industrial control, communication system, network system and military industrial
project. However, there are few researches about Minisat on this platform. In our paper, we apply
the Minisat coarse-grained parallel algorithm to ARM platform, and compare its performance with
that on X86 platform, so that we can know if ARM platform is more suitable to solve SAT problems
than X86 platform, which is of great significance to a deep study on SAT.

Methodology
Minisat is a kind of complete SAT solver, it can theoretically solve all SAT problems.

Comparing with the incomplete solver, its structure is more complex and the solving process is

5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering, volume 126

1158

more complicated. Figure 1 shows the main steps of Minisat solver solving a SAT problem. From
Figure 1 we can find that steps of Minisat including variable decision, propogation, conflict
judgment, conflict analysis, clause learning, are associated tightly. These steps share a clear order.
The latter step needs the data produced by the former steps, which means the algorithm exists
strong data dependence and not suitable for being dealt with the fine-grained parallel technique. If
we seperate the solving process of one SAT case into several jobs and put them on different threads
to complete, chances are that communication cost among threads will occupy plenty of computing
resources, reducing the solution efficiency of the algorithm. Therefore, we carry on the
coarse-grained parallel technique, that is, we start multiple threads at the same time while each
thread at a time dealing with one SAT problem, every thread will not accept a new case until it
succeed solving the present one. Considering the fact that most SAT cases require memory of
several KB to several MB in the process of being solved, which is far less than the available
memory of general computers. Therefore, in this paper, we ignored the memory size restrictions on
Minisat. At the same time, in order to avoid the overhead costs of sharing thread parameters and to
trade space for time, we define independent data structures and allocate independent memory space
for each thread when starting multiple threads. So the threads are independent of each other and
share no data exchange.

Simplify

Variable Decision

Propogation

Conflict？Yes

Conflict
Analysis

Top
Conflict？No

Clause
Learning

Yes

UNSAT

No

All variables
satisfied？Yes

SAT

No

SAT
Problem

Fig.1. Flow chart of Minisat
As for scheduling strategy, we adopt dynamic scheduling so as to balance the load among

threads. This kind of scheduling method dynamically allocates the input SAT cases to threads
according to the solving condition of each thread while program is running. What's more, we also
apply asynchronous scheduling strategy to make full use of computational resource, that is, each
thread will immediatelly deal with the next allocated SAT case rather than wait for other threads.
Figure 2 shows the coarse-grained parallel method of Minisat when the solver deals with a set of
input SAT problems.

Using this scheduling method, we imagine that one thread is assigned to a set of SAT cases
whose solving time in all is equal to that of any other threads, and all threads end at basically the
same time, so that threads can run at full capacity in this period of time, making full use of the
computing resources of the computer. But things are different when the solver runs in practice. We
noticed that threads are not end as the way we imagined. Some threads are still working while
others have already finished their jobs.

After analysis, we realize that because the solving time of each input SAT problem varies and
these SAT problems are sent into Minisat in an fixed order, such an circumstance will happen:

Advances in Engineering, volume 126

1159

Thread A have completed the penultimate mission when the system assigns it an easy case. While
Thread A is dealing with its last mission, Thread B completes its penultimate mission and system
gives it a much more difficult case. So thread B will keep solving this case for a long period of time
after Thread A stops, which leads to the different run time of two threads. This explanation is also
effective when the number of threads is more than two. The time difference mentioned above can
theoretically reach to as much as the solving time of the most difficult SAT problem among the
input dataset.

Input SAT Set

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 N

aaa

Output Results

Fig.2. Coarse-grained parallel method of Minisat
We propose a new scheduling algorithm with time sequence in order to solve this problem. Basic

idea of this algorithm is that the SAT datasat are ordered by time sequence from large to small
according to their practical solving time before sent into Minisat solver, so that cases with a longer
solving time will be scheduled prior to those with a shorter solving time. By doing so, each SAT
case of thread assigned at last is an easy case, making it possilble to keep run time of each thread
basicly equal. Diffrences between the ordinary dynamic scheduling and dynamic scheduling with
time sequence are shown in figure 3.

SAT
Input Order 2 4 3 1 5 6

Thread 1

Thread 2

Thread 3

2

4

3

1

5

6

Time

Dynamic
Scheduling
with Time
Sequence

24 3 156

Thread 1

Thread 2

Thread 3

2

4 3

1

5

6

Time

Dynamic
Scheduling

SAT
Input Order

Fig.3. Differences between two scheduling strategies
In order to know a SAT problem's solving time before practically running so as to make the

dynamic scheduling strategy with time sequence realizable, we borrow Frank Hutter's time
prediction model [9] that is based on random forest. This model can predict the solving time of SAT
problems according to their features, making it possible to arrange the input dataset in time
sequence from big to small and meet the need of our new scheduling strategy.

Advances in Engineering, volume 126

1160

Experimental Results and Analysis
We do the experiment on both X86 and ARM platforms. Configuration information of the two

platforms are shown in Table 1.
Table 1. Configuration information of X86 and ARM platforms

Platform X86 ARM
CPU Model Intel Xeon E5-2650 FT-1500A

Number of CPU 1 2
Cores per CPU 16 8

Hypert-threadings per Core 2 1
Frequency 2.00GHz 1.5GHz

Memory Size 64GB 32GB

Table 2. Testset solving time with different threads on two platforms using two scheduling methods.
Number of thread 1 2 4 8 16 32 64 128

Dynamic
Scheduling

X86 4191.3 2444.9 1188.3 576.3 334.8 237.6 253.1 270.4

ARM 8789.9 4481.7 2257.3 1212.4 700.6 725.1 751.9 770.7
Dynamic

Scheduling
with Time
Sequence

X86 4191.3 2568.3 1230.3 581.6 310.1 218.7 257.0 312.3

ARM 8789.9 4384.8 2219.8 1143.6 638.2 686.1 735.1 778.8

The testdata consists 2000 SAT cases, each of them is able to be solved in less than 100 seconds.
During the experiment, we test the two scheduling methods on both platforms. As for each
scheduling method, we set different numbers of threads to solve the testdata. The program stops and
we record the time used when all of the testset are successfully solved. It’s worth noticing that when
we test the dynamic scheduling method with time sequence, the time spent on predicting solving
time and sorting is not reckoned in.

Fig.4. Speed-up ratio of different scheduling methods on different platforms (The horizontal axis

represents number of thread while the vertical axis represents speed-up ratio. The green, blue,
purple and red line respectively represents dynamic scheduling with time sequence on X86,
dynamic scheduling on X86, dynamic scheduling with time sequence on ARM, dynamic scheduling
on ARM).

The experiment results are shown in Table 2. Figure 4 shows the speed-up ratio.
After analysis of data from Table 2 and Figure 4, we can come to conclusions:
1. Minisat perfoms best with 32 threads on X86 platform while with 16 threads on ARM

Advances in Engineering, volume 126

1161

platform, which is in accordance with their own hardware configuration.
2. Dynamic scheduling with time sequence perfoms better than ordinary dynamic scheduling on

both platforms. The speed-up ratio increases from 17.64 to 19.16 on X86 and from 12.55 to
13.77 on ARM platform, which is a pretty good perfoamance improvement.

3. ARM platform has a better scale effect than X86 when running with full load. As we can see,
Performance of one thread on X86 is about twice as fast as that on ARM, but X86’s
performance when running with full load is just 3 times as fast as ARM’s. This number
should be 6 because this X86 computer can support threads twice as many as ARM computer.
So ARM computer obtains an extra speedup than X86 by parallelism. Therefore, it is
probably that ARM will perform better than X86 if they have the same configuration.

Conclusion
In this paper, we adopt a dynamic scheduling strategy with time sequence into Minisat’s

coarse-grained reseach and achieve a better speed-up ratio and performance than ordinary dynamic
scheduling. What’s more, we complete the same test on ARM platform and find that even ARM’s
overall performance when running Minisat is not as good as X86’s, it should perform better when
increasing its cores, support threads and cpu performance to X86’s level.

Acknowledgement
In this paper, the research was sponsored by the National Key Research and Development

Program of China (Project No. 2016YFB0200401) and National Science Foundation of China
(Project No. 61303070 and No. 61572515).

References

[1] Cook S A. The complexity of theorem-proving procedures[C]// ACM Symposium on Theory of
Computing, May 3-5, 1971, Shaker Heights, Ohio, Usa. DBLP, 1971:151-158.

[2] Een N, Srensson N. An Extensible SAT-solver, Lecture Notes in Computer Science 2919,
Springer (2004) 502-518.

[3] Sofroniestokkermans V. DPLL (T): Fast Decision Procedures [J]. 2004.

[4] Chrabakh W, Wolski R. GrADSAT: A Parallel SAT Solver for the Grid[C]// Supercomputing
Conference. 2003.

[5] Forman S L, Segre A M. NAGSAT: A Randomized, Complete, Parallel Solver for 3-SAT [J].
Proceedings of Sat, 2002.

[6] Zhang H, BONACINA M.P.A.O.L.A, Hsiang J. PSATO: a Distributed Propositional Prover and
its Application to Quasigroup Problems [J]. Journal of Symbolic Computation, 1996,
21(4-6):543-560.

[7] Jurkowiak B, Li C M, Utard G. A Parallelization Scheme Based on Work Stealing for a Class of
SAT Solvers [J]. Journal of Automated Reasoning, 2005, 34(1):73-101.

[8] Gil L, Flores P, Silveira L M. PMSat: a parallel version of MiniSAT. [J]. Journal on
Satisfiability Boolean Modeling & Computation, 2008, 6(6):71-98.

[9] Hutter F, Xu L, Hoos H H, et al. Algorithm runtime prediction: Methods & evaluation[J].
Artificial Intelligence, 2014, 206(206):79-111.

Advances in Engineering, volume 126

1162

