
Design and Implementation of Dynamic and Efficient Web Crawler for
XSS Vulnerability Detection

Ao Chai1,a

1College of Computer and Control Engineering, Nankai University, Tianjin, 300071, China
aemail: chaiao12@163.com

Keywords: Crawler; Parallel; XSS; Vulnerability

Abstract. With the continuous development of Web technology and the sustained popularization of
the Internet, the security problems of the Web has been attracting more and more attention from the
network workers. According to the OWASP (Open Web Application Security Project), XSS (Cross-
Site Scripting) has been among the top three vulnerabilities in a number of threats. Therefore, it is
very meaningful to design XSS vulnerability automatic mining tools. Crawler, as a web data
scratching tool, has been favored by search engine workers. In this paper, we introduce a dynamic
parallel crawler aiming for XSS vulnerability detection, and the basic principle of XSS. Based on
them, we designed an efficient XSS detection tool. Finally, an experiment shows that our tools can
detect XSS vulnerabilities efficiently.

Introduction
With the development and popularization of the Internet, E-mail, Blog, Forums, Post Bar, etc.

has become an indispensable part in people's work and life. While these services bring convenience
to people, there are still more and more potential risks. XSS (Cross-Site Scripting) attack, for
example, is widespread in the Internet, and has been security risks to the Web. It allows the attacker
to inject the script into the pages, which can cause serious damage to user privacy. According to the
newest Symantec Internet Security Threat Report [1], XSS is listed as No.5 of "Top 10
Vulnerabilities Found Unpatched on Scanned Web Servers". Meanwhile, in the security
vulnerability list published by OWASP (Open Web Application Security Project), XSS ranks as top
three [2].

In order to detect the presence of XSS vulnerabilities in the Web system, many security
researchers have been studying various automation tools. The XSS mining tool based on crawler is
an efficient and active detection method [3], which is commonly used to assess the security of Web
applications. In this paper, we designed a dynamic multi-threaded crawler tool to help XSS
vulnerability detection, which uses an improved Bloom Filter algorithm for URL duplicate
checking.

Efficient parallel network crawler design
The basic principle of crawler and the basic structure of an efficient parallel crawler

Web crawler [4] usually starts with a collection of URL, which called a seed set (each file on the
network has an address, i.e. URL). The crawler will first fetch the URLs from the collection, which
have been ordered in a queue. In a certain order, the crawler downloads the pages, analyze the page
content, collect useful information, and extracts the new URLs then stored them in the queue, which
is mentioned earlier, to download later. Repeat the above procedure until the URL queue is empty
or satisfies a crawling termination condition, so as to traverse the target Web.

In this paper, we introduce an efficient dynamic parallel network crawler. It consists of a crawler
controller to manage all crawler threads, dynamically creates the required crawlers and destroys idle
crawlers. Meanwhile, it has an URL resolving module. Before crawlers download the pages, the
module maps all the URL to IP address, so that the burden of crawlers can be greatly reduced and
the efficiency can be dramatically improved. At the same time, we use an improved Bloom Filter

5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering, volume 126

1169

algorithm to check the duplication of URLs. The function modules and the architecture are shown
in the following figure, where the Crawler Controller, the URL Resolver, and the URL Update
module must access the URL Frontier in a mutually exclusive way.

Fig.1. The architecture of the dynamic parallel crawler

Parallel module
If there are lots of crawler threads accessing the URL Frontier exclusively, it's likely to cause the

URL Update process busy, according to the "Readers-Writers problem" [5]. So here, we set up a
crawler controller to fetch URLs from URL Frontier in a batch mode. The controller is in mutual
exclusion with the other two modules while visiting the URL Frontier. Due to the unpredictability
of the network environment [6], it is difficult to predict the time that each crawler thread spends, as
well as the appropriate number of crawler threads. Therefore, our crawler controller also has a
function that create new threads and destroy idle threads. Both of them depend on the number of
requested URLs as well as the Internet situation.

The HTTP requests must be set when crawlers access the Internet, such as HTTP headers, cookie
settings, etc. After the crawlers download the pages, they analyze the HTML, extract the input tags
and links contained within the page, then send the links into an URL buffer exclusively.

The pseudo-code of the crawler controller is given below:

URL Frontier DNS
Resolver

Duplicated URL
Detection

Analyze

Extract Input
Label

Crawler Manager

XSS Test

Crawler N Crawler 3 Crawler 2 Crawler 1

Web

DNS

Advances in Engineering, volume 126

1170

void CrawlerController() {
 while(TRUE) {
 if(point-length!=0){
 down(&mutex_URLFrontier);
 Read(URLFrontier,50);
 up(&mutex_URLFrontier);
 }
 else {
 up(&mutex_URLFrontier);
 continue;
 }
 while(buffer!=null) {
 if(IdleCrawler==0) Create(NewCrawlerThread,URL);
 else Assign(CrawlerThread,URL);
 }
 if(IdleCrawler!=0) Kill(CrawlerThread);
 }
}

The pseudo-code for the crawler is as follows:
void Crawler() {
 Assemble(HTTPHead);
 Request(URL);
 urls=ExtractNewURL(document);
 down(&mutex_URLBuffer);
 write(urls,URLBuffer);
 up(&mutex_URLBuffer);
 Sleep();
}

URL Resolving module
Typically, the server, where the HTML page located in, has a domain name The domain name

must be translated into the corresponding IP address before browsers or crawlers can access. The
Internet provides a specific service, which is called DNS (Domain Name System), to map the
domain name to the IP address. The experiment shows that when the client sends an HTTP request
to the server, DNS resolving time consumes at least 30% of the total time. Further, due to the
network situation, the request would be also lost at certain possibility [7].

 Therefore, we set up a DNS resolving module specifically in the crawler system, which works

in parallel with the Crawlers. It visits the Internet DNS server, maps the URL and IP, and saves

Advances in Engineering, volume 126

1171

them in pair in the URL Frontier. In this way, each crawler no longer has to visit the DNS server but
can directly access the target site. Thus, the efficiency of crawler access is improved. The pseudo-
code is as follows:

void IPResolver() {
 while(true) {
 down(&mutex_URLFrontier);
 Read(URLFrontier);
 up(&mutex_URLFrontier);
 Call(DNS to resolve IP of URL);
 down(&mutex_URLFrontier);
 Write(URLFrontier);
 up(&mutex_URLFrontier);

}
}

Parallel URL duplicate checking module
When crawlers work in parallel mode, they will encounter duplicate URLs inevitably. If the

crawlers take time to access the repeated URLs, the efficiency of the system will be seriously
influenced. So how to prevent the crawler from accessing the same pages, that is, how to quickly
determine whether a URL is already in the URL Frontier, is a very crucial part.

We use an improved Bloom Filter algorithm. The traditional Bloom Filter algorithm was
proposed by Burton Howard Bloom in 1970. It is based on hash to detect whether an element exists
in a particular set. It is a space- and time-efficient data structure[8].

It sets an array of i bits. Initially, each bit is set to be 0. Then it sets j completely
independent hash function.

)1)((jkkeyHh kk ≤≤= (1)

Each hash function can map the element which is to be detected to a bit of the
array.Now,the element is operated by j different hash, get j results jhhhh ...,, 321 . Then set the
corresponding j positions in the array to be 1. When testing the next element, do the same operation,
and observe whether j new positions are already set to be 1 in the array. If so, it represents the
element is in the collection. Figure:

 Fig. 2. The principle of Bloom Filter
It is not difficult to see that, due to the characteristics of the hash function, the Bloom Filter

algorithm has a certain error rate, that is, the elements that are not actually within the collection may
be considered as existed, (on the other hand, the elements which exist in the collection can be truly
detected), so the algorithm can result in False Positive. In the case that hash functions are properly
selected, it is obvious that the array size i and the number of hash functions j determine the
probability of False Positive. According to the literature [8], we have the exact probability of False
Positives below:

[] jijnjjnj
t

j e
i

qEttq)1())11(1()1()1)(Pr(/−−≈−−=−≈−=∑ (2)

 We improved the traditional Bloom Filter so that it can support parallel computing. We set hash
functions to make sure each of them has separated result. Namely, all the hash have j/i consecutive
bits in the array. Therefore, these hashes can be calculated and checked simultaneously. Figure:

1 0 1 …………………. 0 1 1 1 1 0 1

H (URL1) H (URL2) H (URL3)

Advances in Engineering, volume 126

1172

Fig.3. The principle of Parallel Bloom Filter

We deduce the False Positive rate of this improved Bloom Filter as follow. Since a bit in the
array can only be calculated by one hash function and its probability is)/(ij ,then the probability
that the bit is not selected is)/1(ij− . If there are n elements added to the collection, the probability
that a bit in anarray is zero after storing the whole elements should be nij)/1(− . We have

)/()/1(ijnn eij −≈− . By
jn

i
n

i
j)1()1(1−≤− (3)

As n increases, they are infinitely close. So the probability of False Positive in improved Bloom
Filter is only slightly higher than the traditional one. However, considering that our algorithm
supports parallel, this small sacrifice is still worthwhile.

XSS basic principles and variation rules
XSS introduction

XSS (Cross-Site Script) is an application-level security issue which allows the attacker to inject
client-end scripting into a Web pages. Combining with other vulnerabilities, it can lead to a worm
attack that causes serious harm to user's privacy. Many security workers have been studying various
approaches of detection and defense. According to the characteristics of XSS and its attack methods,
security workers divided into three main types generally:

• Reflected XSS Attack: This type of XSS is the most common, but also the most widely used
by hackers. The attacker attaches the malicious script to the URL parameter. When the user
clicks on the link, the code will execute at user's host.

• Stored XSS Attack: With lower trigger cost, this type of XSS is more threatening than
reflected XSS, and can even affect the security of Web server.

• DOM-based XSS Attack: By modifying the page DOM node information to form the XSS
attacks. It often needs to be constructed for specific JavaScript DOM.

Transform the primitive attack vectors
Generally speaking, most websites have XSS filters, which use the keyword blacklist strategy

and the regular expression to filter the input data [9]. Although it's an effective method, we can still
transform our attack vectors in various way.

There are three main approaches for the variation of attack vectors:
1. Original Vectors Encoding
 With several ways of encoding mechanism, original vectors can be combined into variety

forms malicious attack vectors. Therefore, the encoded vectors can bypass the filter and try to inject
the script into the code. Here we focus on three main parts:

• HTML entity encoding
• Tag attribute encoding
• Special attribute data

2. Confuse the special characters in original vectors

0 0 1 0 1 0 1 0 1 0 0 1 1 0 0

Advances in Engineering, volume 126

1173

• Change the letter case in tags: the letter case in the tags does not influence the operation of
the code, but it can make the filter's keywords identification confused.

• Change slashes to spaces: most of the time, slashes play the same function as spaces in
HTML, and it can bypass filter easily.

• Insert newlines or tabs: the browsers will skip these special characters in the operation of the
code, meanwhile, the special characters may also bypass the filters.

• Change or add quotation marks: there are commonly four ways to indicate values in tags:
single quotes, double quotes, anti-quotes, and no quotes. Using the mixed or unpaired quotes
can easily lead to the result that certain events bypass the filter and become a new attribute
itself successfully.

3. Recombine the original vectors:
 Some attack vectors can be nested within other vectors, then they can bypass the filter. Many

filters tend to ignore the content in attributes. As for some tags, due their own characteristics, it's
easy to insert other labels into their interior and attributes. Such as <embed>, <iframe> and
<object>. One of the methods is to add/delete the angle brackets from tags, resulting in a content
overflow and then bypassing the filter. Such as the new attribute "srcdoc" in HTML5, you can insert
a new label, triggering a XSS attack.

Experiment
Problems before the experiment

Nowadays, lots of websites installed anti-crawler system for the consideration of security and
some moral and legal regulations. However, from the nature of the white hat workers, as well as
under their moral constraints, i.e., not to collect user's name, address, telephone or E-mail, we can
break through some restrictions for security reasons.

(1) Change of HTTP Request Header
In the HTTP protocol, when the client sends a request to the server, a set of attributes and

configurations is transmitted. HTTP defines more than ten kinds of types of request header and
attribute fields, the following seven are common:

Host Connection Accept User-
Agent

Referrer Accept-Encoding Accept-
Languages

 The major difference between request sent by a browser and sent by Python Crawler would be
as follow:

Attribute User-Agent Accept-Encoding
Python crawler content Python-urllib/3.7 identity
Look into content normally Mozilla/5.0 (Windows; U;

Windows NT 5.1; zh-CN;
rv:1.8.1.11) Gecko/20071127
Firefox/2.0.0.11

gzip, deflate

Some websites can tell whether the request is from a crawler through this, then refuses to
respond. Here we use Python's "requests" module [10] to modify the headers in the code. The
Python code is as follows:

session=requests.Session()
headers={"User-Agent":"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.8.1.11)
Gecko/20071127 Firefox/2.0.0.11",
"Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8"}
url="http://www.baidu.com"
req=session.get(url,headers)
(2) Cookie and access features

Advances in Engineering, volume 126

1174

Some websites need to identify the user's identity by Session Tracking [11]. For example, the
user must log in to browse certain pages. So we need to use Python's selenium module [12] to set
the request cookie.

Some other websites, however, determine whether the request is from a crawler by observing the
its interaction with the server. For example, loading pages so fast, the server will consider the
request comes from a crawler, not human. So we can also set the request interval, random time is
the most ideal. The Python code is as follows:

time.sleep(random.randint(3,10))
(3) The hidden input tags
 Several websites set some hidden input tags to prevent crawlers from accessing. These input

points, under normal circumstances, the is invisible to the human user, but can be found by crawlers.
If these tags are automatically input content, it is reasonable for the server to believe that is a
crawler visiting, rather than a person. In general, there are three ways to hide the page input tags:

• Set the label attribute to "hidden"
• Set the CSS property "display: none"
• Move the input field outside of the screen, while hiding the scroll bar

To deal with this, we need to use the Python selenium module [12] is_displayed () function to
scan the page first.

Test result
In order to prove the effectiveness of our crawler system, we chose two well-known portals for

our scanning test. Meanwhile, we operated the system with two popular vulnerability mining tools:
Acunetix and XSSer and an open source crawler tool Blue Leech for comparison. The first portal
has 6112 valid URLs, and the second portal has 21091. (We do not disclose the name of the site,
given privacy.)

Our experiment is based on the platform of Linux Ubuntu 16.04.2, the Python version is
3.5.3.The result as following:

 Acunetix XSSer Blue Leech Our Tools
#1Portal Scanning 3 hours 31

mins
3 hours 20 mins 4 hours 5 mins 3 hours 9 mins

#1Portal
Vulnerabilities

23 16 - 21

#2Portal Scanning 17 hours 21
mins

15 hours 20
mins

20 hours 57
mins

15 hours 19
mins

#2Portal
Vulnerabilities

12 9 - 12

The above experimental data proves that our crawlers, which is designed for XSS vulnerability
mining, has a high efficiency. More important, while our tools is running, the system resource
occupancy rate is relatively small. This is one of the important advantages of our tool.

Conclusion
In this paper, we proposed a dynamic parallel crawler system, which is designed for XSS

vulnerability detection, and introduced the important modules in detail, including crawler controller
module, parallel duplicate checking module, DNS resolving module and so on. Finally, we tested
the XSS vulnerability detection tool, indicating the tool has certain advantages in scanning websites,
which involves speed and system resource occupancy. However, XSS attacks means have been
emerging in an endless stream, not only based on HTML, but also on Flash, ActiveX or Silverlight.
This brings the XSS vulnerability mining endless challenges.

Advances in Engineering, volume 126

1175

References

[1] Symantec Internet Security Threat Report: Trends for July December 2007 (Executive Summary)

[2] Top 10 2013 [Online]: https://www.owasp.org/index.php/Top_10_2013

[3] Priti Singh, Kirthika Thevar, Pooja Shetty, Bushra Shaikh. Detection of SQL Injection and XSS
Vulnerability in Web Application. International Journal of Engineering and Applied Sciences,
March 2015.

[4] Mini Singh Ahuja, Dr. Jatinder Singh Bal, Varnica. Web Crawler: Extracting the Web Data.
International Journal of Computer Trends and Technology, volume 13 number 3, Jul 2014.

[5] Andrew S. Tanenbaum, Herbert Bos. Modern Operating Systems. Mar 20th, 2014.

[6] James Kurose, Keith Ross. Computer Networking: A Top-Down Approach (7th Edition) May 6,
2016.

[7]Jaeyeon Jung, Emil Sit, Hari Balakrishnan, Robert Morris. DNS Performance and the
Effectiveness of Cashing.

[8] Sasu Tarkoma, Christian Esteve Rothenberg, Eemil Lagerspetz. Theory and Practice of Bloom
Filters for Distributed Systems.

[9]https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_%28OTG-
INPVAL-002%29

[10] http://docs.python-requests.org/en/master/

[11] Pranjali Gondane, Dinesh. S. Gawande, R.D. Wagh, S.B. Lanjewar, S. Ugale. Securing Web
Application from SQL Injection & Session Tracking. International Journal of Engineering Science
and Innovative Technology. Volume 2, Issue 3, May 2013.

[12] http://www.seleniumhq.org/docs/03_webdriver.jsp

Advances in Engineering, volume 126

1176

