
Analysis on Software Bus Architecture of 
Distributed Computer

Rui Wang
Liaoning Jianzhu Vocational College, Liaoyang, Liaoning, 111000

Abstract

Now the system is getting bigger and bigger, a system requires a lot of functions 

to complete, so software reuse and integration has an unusual significance. 

Component model is a new generation of software development logo. In order to 

improve software productivity, not hastily developing applications, developers 

should, as far as possible reusable software components, assembly and 

construction of new applications. However, component-based software 

development has the shortcomings of single-machine, not suited to the 

development of network. The distributed computer software bus architecture 

proposed in this paper is based on the development of components. The single-

machine architecture of component development has been improved, and a new 

architecture model is designed for network development.

Keywords: Distributed Computer Software, Bus Architecture, Network 
Technology

1 Introduction

Traditional methods of application development software are often an 

independent holistic system. After the needs of the prior analysis and design of 

the software developed, its various functions and characteristics linked together 

in a fixed manner. However, many of these features can not be removed, 

upgraded, or replaced independently. For other applications, even with the same 

programming language, and run on the same machine, it is difficult to use the 

program's data and functions. Different applications, like strangers, are 

completely isolated.

5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017) 

Copyright © 2017, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Engineering, volume 126

1501



In the development of software-based components, in order to reduce the 

repetitive work, the software components must be implemented in different 

programming languages. This presents the problem of communication and 

integration of software components between different language implementations. 

The solution to this problem can be obtained from the computer hardware bus 

inspiration.

The hardware bus of the computer system is a common channel between

computer components, between input and output devices to transmit data 

information, ground information and control information. Hardware bus is a 

group of copper platinum wire as the carrier signal transmission line. By means 

of the bus, C can exchange information with main memory and input / output 

devices. In the computer hardware bus, you can plug a variety of types and multi-

block universal standard interface module to form a powerful more perfect 

computer system. Such as a display interface card, a multimedia movie card, a 

sound card, and a printer interface card. In fact, the hardware bus is a computer 

CPU and the functional module components and input and output devices are 

interconnected with a tool. The purpose of discussing the hardware bus is to bring 

out the new concept of distributed software bus.

Software bus, like the computer hardware bus, is a tool, is a different from the 

hardware bus software design tools. In fact, the software bus is the hardware bus 

virtual and mapping, is an abstraction of the hardware bus. The so-called 

distributed computer software bus is the use of distributed technology, object-

oriented for a variety of computer languages written by multiple, multi-type, type 

of software functional component (object) service a group of virtual data 

transmission line. This group of virtual data information transmission lines is 

software, which is a set of standard integrated software functional components 

that are common to distributed technology. The interface is between the computer

operating system and various integrated functional components or integrated 

software functional components Data transmission and connection of the virtual 

public channel and interface interface, is a software reuse development tools. Of 

course, the computer hardware bus and the distributed computer software bus are 

substantially different.

2 Distributed object technology base

Distributed object technology is a kind of object-oriented technology developed 

along with the network. Previous computer systems are mostly stand-alone 

systems, a number of users through the online terminal to access, there is no 

network concept. After the emergence of the network, drink to the ient / Server 

computing service model, multiple clients can share the database server and print 

server and so on. With the further development of the network, many of the 

software needs of different manufacturers of network products, hardware 

platforms, network protocol heterogeneous environment to run the scale of the 

application from the LAN to the development of wide area network. In this 

situation, the clieot / server model of the limitations also exposed, so middleware 

Advances in Engineering, volume 126

1502



came into being. Middleware in load balancing, connection management and 

scheduling has played a significant role in the performance of enterprise 

applications has been greatly improved to meet the needs of key business needs. 

But at this stage, the client is to request services, the server side is to provide 

services, their relationship is asymmetric. With the further development of object-

oriented technology, the emergence of distributed object technology, It can be 

said, distributed object technology is with the network and the development of 

object-oriented technology continues to improve. Early 90s CORBA1.0 standard 

promulgated, opened a prelude to the calculation of distributed objects.

In a distributed object computation, the computational body (the distribution 

object) that is normally involved in the calculation is symmetric. A distributed 

object is sometimes called a component. A component is a wrapper around 

individual code. It can be a simple object in a distributed computing environment, 

but in most cases it is a set of related object complexes that provide certain 

services. Distributed environment, to master the kernel is a number of sensitive 

software modules, they can be location-transparent, language independent and 

platform independent of each other to send messages to achieve the request 

service.

3 Distributed software bus architecture and services

The software bus is transparent to the user and uses the software bus. First, the 

user application registers its own message (just a string) with the software bus 

management center: Second, the application can identify any of its known 

Registration information Sends a message as a parameter, which can be data in 

any format, the interpretation of which is determined by the application.

On a software bus, if the destination program moves to a network where the 

application sends a message without having to know the destination end of the 

message, the message also arrives at the end point where it is located. There is no 

need to recompile the source code , Re-generation process. In this sense, the 

software bus on the network for the application to establish a virtual platform.

The overall structure of a common core as the center, the core includes 

portable object adapter, communication and transmission protocols. The upper 

part of the structure is the component development workstation, the left part is the 

component test, calculation, development and management system, and the right 

side is the component storage system, namely the component storage database. 

Interface interface is to deal with different language systems or different language 

components interface between the communication interface, including the IDL 

compiler (IDLCompiLe). Compiler (ClDI Compile). To the right of the interface 

interface is the application API. The left side of the common core is the secure 

interface of the application system and the software bus, utilizing Secure Socket 

Layer (SSL), and firewall technology. The right side is named service and 

notification service. The lower part of the common core is the various services of 

the software bus communication core: object transaction service OTS, continuous

state service PSS, value object ObV, software bus management control, mouth 

Advances in Engineering, volume 126

1503



record service) and authentication authorization management. After the 

application development integrator has developed the system, the qualified 

system is placed into the application repository.

Universal core to portable object adapter P0A and communication protocol 

IOP protocol-based. The design of POA 11 is to enable communication between 

different software busses, to support objects with persistent identities, to provide 

support for transparent activation of component objects, to implicitly activate 

servants via the objectID of p0A, to allow component objects Is responsible for 

maximizing the behavior of the object, allowing the programmer to construct an 

object implementation inherited from the static program framework class and 

generated by the IDI compiler. Each component server can have more than one 

POA, each POA to provide different functions or to support different 

characteristics. And each pOA provides a separate object to live space, there is a 

set of POA strategies to determine how these objects are activated and how to 

build a reference object. The POA strategy is quite complex. However, in 

component assembly, the soft component service locator strategy is the most 

scalable POA strategy. The generic oRB interop structure is based on the Generic 

Inter-ORB Protocol (GIOP), which defines the message format for transport 

syntax and any connection-oriented ORB interoperability. 110P can achieve 

communication between components through the software bus.

The goal of the software from the software bus is to create highly integrated, 

well-integrated component-composite applications, with significantly different 

tasks for each of the components, and to create a low coupling between 

components in the system. This requires that the system designer extend the 

object-oriented principle from the object specification to explicitly represent the 

object dependency using the interface definition. This specification of software 

bus and component capabilities can be divided into several interfaces. 

Partitioning the component specification into multiple interfaces can make the in-

component dependencies limited to individual interfaces, rather than the entire 

component specification. The interface to the software bus is to implement 

programs written in one language to communicate with other programs written in 

an unknown language. OMGIDJ always allows you to create inheritance-based 

object relationships. However, the design needs to support objects that contain 

multiple interfaces, which are constructed by combining rather than inheriting. 

Object inheritance allows you to define an implementation of this class in terms 

of another class, which allows you to define classes by grouping or grouping 

objects together. OMGIDL needs to express the ability to combine and inherit.

4 Software bus standard software components

Both reusers and component producers need to get the widgets. Component 

acquisition is mainly combined with re-development and utilization of existing 

software, in addition to re-development, there are modifications of existing 

components, re-engineering, reverse engineering and other means. (Which can be 

used but will not be reused) or overly distributed. Reusable but not easy to use) 

Advances in Engineering, volume 126

1504



Software knowledge is converted to available and reusable entities: the use of 

existing resources,

The main contents of this paper include reusable component development 

methodology, component model, component description language, reusable 

component library conceptual model, reusable component, reusable component 

library, component reusable component reusable component Library management 

system, component-based software development process and other related tools 

and so on. Among them, the software bus research and component model is the 

foundation and core, unified soft bus standards and components phase, is to 

achieve the basic premise of application system assembly.

5 Conclusion

The idea proposed in this paper is beneficial to improve the traditional software 

development in the development cycle is long, high maintenance costs, the 

application must rely on operating systems and programming languages and other 

shortcomings and modern component-based software development of the 

programming language Dependence and the development of stand-alone and 

other shortcomings. In the application of distributed object technology, it 

improves the limitation of application of middleware in domestic and abroad. It is 

the first time that the distributed technology is combined with the development 

and application of software technology to make the technology of software 

development more adapt to the development of network technology. The 

component development method is applied to network development, which 

improves the efficiency and quality of the software development, improves the 

software development technology and reduces the development cost.

References

[1] Zhou Yue, Wang Hong. Software bus technology and its application in 

enterprise ERP. Computer Development & Applications, 3(2), pp. 13–22,2006.

[2] Software bus in the East Alpine. Software Engineer , 4(1), pp. 15–17, 2004.

[3] Sun Zhian, Dou Qiang. Software bus: architecture analysis and 

design.Command Control and Simulation , 4(1), pp. 13–16, 2001.

[4] Li Jianhong, Zhan Chuanjie. Development of control function module in 

software bus architecture. Microcomputer Information, 30(2), pp. 16–18, 2009.

[5] Wu Kehe, Song Min, Zhou Jing. A software bus technology based on multi-

agent system.Power System Technology, 3(1), pp. 18–31, 2007.

Advances in Engineering, volume 126

1505




